
JPAJPA
The New Enterprise The New Enterprise
Persistence StandardPersistence Standard

Mike Keith
michael.keith@oracle.com
http://otn.oracle.com/ejb3

• Co-spec Lead of EJB 3.0 (JSR 220)
• Java EE 5 (JSR 244) expert group member
• Co-author “Pro EJB 3: Java Persistence API”
• Persistence/Container Architect for Oracle
• 15+ years experience in distributed, server-

side and persistence implementations
• Presenter at numerous conferences and

events

About MeAbout Me

How many people are using proprietary
persistence APIs?

How many people have already used
EJB 3.0 Java Persistence API (JPA)?

How many people are interested in
moving to a standard persistence API?

About YouAbout You

• Persistence API for operating on POJO entities
• Merger of expertise from TopLink, Hibernate,

JDO, EJB vendors and individuals
• Created as part of EJB 3.0 within JSR 220
• Released May 2006 as part of Java EE 5
• Integration with Java EE web and EJB containers

provides enterprise “ease of use” features
• “Bootstrap API” can also be used in Java SE
• Pluggable Container-Provider SPI

About JPAAbout JPA

• Part of “Glassfish” project on java.net
• RI for entire Java EE platform

• Sun and Oracle partnership
• Sun Application Server + Oracle persistence

• JPA impl called “TopLink Essentials”
• Derived from and donated by Oracle TopLink

• All open source (under CDDL license)
• Anyone can download/use source code or binary

code in development or production

Reference ImplementationReference Implementation

• Abstract or concrete top level Java class
• Non-final fields/properties, no-arg constructor

• No required interfaces
• No required business or callback interfaces (but you
may use them if you want to)

• Direct field or property-based access
• Getter/setter can contain logic (e.g. for validation)

• May be Serializable, but not required
• Only needed if passed by value (in a remote call)

Anatomy of an EntityAnatomy of an Entity

• Must be indicated as an Entity

1. @Entity annotation on the class

@Entity
public class Employee { … }

2. Entity entry in XML mapping file

<entity class=“com.acme.Employee”/>

The Minimal EntityThe Minimal Entity

@Entity

public class Employee {

@Id int id;

public int getId() { return id; }

public void setId(int id) { this.id = id; }

}

• Must have a persistent identifier (primary key)

The Minimal EntityThe Minimal Entity

• Identifier (id) in entity, primary key in database
• Uniquely identifies entity in memory and in db

1. Simple id – single field/property
@Id int id;

2. Compound id – multiple fields/properties
@Id int id;
@Id String name;

3. Embedded id – single field of PK class type
@EmbeddedId EmployeePK id;

Uses
PK

class

Persistent IdentityPersistent Identity

• Abstraction representing a set of “managed”
entity instances

• Entities keyed by their persistent identity

• Only one entity with a given persistent identity
may exist in the PC

• Entities are added to the PC, but are not
individually removable

• Controlled and managed by EntityManager
• Contents of PC change as a result of operations

on EntityManager API

Persistence ContextPersistence Context

Application Persistence
Context

Entities

MyEntity A

MyEntity B

MyEntity C
MyEntity a

EntityManager

MyEntity b

Entity
state

Persistence ContextPersistence Context

• Client-visible artifact for operating on entities
• API for all the basic persistence operations

• Can think of it as a proxy to a persistence
context

• May access multiple different persistence contexts
throughout its lifetime

• Multi-dimensionality leads to different aspects
of EntityManager (and persistence context)
naming

• Transaction type, life cycle

Entity ManagerEntity Manager

• EntityManager API
persist()- Insert the state of an entity into the db
remove()- Delete the entity state from the db
refresh()- Reload the entity state from the db
merge()- Synchronize the state of detached entity with the pc
find()- Execute a simple PK query
createQuery()- Create query instance using dynamic JP QL
createNamedQuery()- Create instance for a predefined query
createNativeQuery()-Create instance for an SQL query
contains()- Determine if entity is managed by pc
flush()- Force synchronization of pc to database

Operations on EntitiesOperations on Entities

• Insert a new entity instance into the database
• Save the persistent state of the entity and any

owned relationship references
• Entity instance becomes managed

public Customer createCustomer(int id, String name) {

Customer cust = new Customer(id, name);

entityManager.persist(cust);

return cust;

}

persist()persist()

• find()
• Obtain a managed entity instance with a given

persistent identity – return null if not found
• remove()

• Delete a managed entity with the given persistent
identity from the database

public void removeCustomer(Long custId) {
Customer cust =

entityManager.find(Customer.class, custId);
entityManager.remove(cust);

}

find() and remove()find() and remove()

• State of detached entity gets merged into a
managed copy of the detached entity

• Managed entity that is returned has a different
Java identity than the detached entity

public Customer storeUpdatedCustomer(Customer cust) {
return entityManager.merge(cust);

}

merge()merge()

• Dynamic or statically defined (named queries)
• Criteria using JP QL (extension of EJB QL)
• Native SQL support (when required)
• Named parameters bound at execution time
• Pagination and ability to restrict size of result
• Single/multiple-entity results, data projections
• Bulk update and delete operation on an entity
• Standard hooks for vendor-specific hints

QueriesQueries

• Query instances are obtained from factory
methods on EntityManager

• Query API:
getResultList() – execute query returning multiple results
getSingleResult() – execute query returning single result
executeUpdate() – execute bulk update or delete
setFirstResult() – set the first result to retrieve
setMaxResults() – set the maximum number of results to retrieve
setParameter() – bind a value to a named or positional parameter
setHint() – apply a vendor-specific hint to the query
setFlushMode()– apply a flush mode to the query when it gets run

QueriesQueries

• Use createQuery() factory method at runtime
and pass in the JP QL query string

• Use correct execution method
getResultList(), getSingleResult(), executeUpdate()

• Query may be compiled/checked at creation
time or when executed

• Maximal flexibility for query definition and
execution

Dynamic QueriesDynamic Queries

public List findAll(String entityName){
return entityManager.createQuery(
“select e from ” + entityName + “ e”)

.setMaxResults(100)

.getResultList();
}

• Return all instances of the given entity type
• JP QL string composed from entity type. For

example, if “Account” was passed in then JP QL
string would be: “select e from Account e”

Dynamic QueriesDynamic Queries

• Use createNamedQuery() factory method at
runtime and pass in the query name

• Query must have already been statically defined
either in an annotation or XML

• Query names are “globally” scoped
• Provider has opportunity to precompile the

queries and return errors at deployment time
• Can include parameters and hints in static query

definition

Named QueriesNamed Queries

@NamedQuery(name=“Sale.findByCustId”,
query=“select s from Sale s

where s.customer.id = :custId
order by s.salesDate”)

public List findSalesByCustomer(Customer cust) {
return

entityManager.createNamedQuery(
“Sale.findByCustId”)

.setParameter(“custId”, cust.getId())

.getResultList();
}

• Return all sales for a given customer
• Use a named parameter to specify customer id

Named QueriesNamed Queries

• Map persistent object state to relational database
• Map relationships to other entities
• Metadata may be annotations or XML (or both)
• Annotations

Logical—object model (e.g. @OneToMany)
Physical—DB tables and columns (e.g. @Table)

• XML
• Can additionally specify scoped settings or defaults

• Standard rules for default db table/column names

Object/Relational MappingObject/Relational Mapping

• Direct mappings of fields/properties to columns
@Basic - optional annotation to indicate simple
mapped attribute

• Maps any of the common simple Java types
Primitives, wrappers, enumerated, serializable, etc.

• Used in conjunction with @Column
• Defaults to the type deemed most appropriate

if no mapping annotation is present
• Can override any of the defaults

Simple MappingsSimple Mappings

public class Customer {

int id;

String name;

int c_rating;

Image photo;
}

CUSTOMER
ID NAME CREDIT PHOTO

@Entity

@Id

@Lob

@Column(name=“CREDIT”)

Simple MappingsSimple Mappings

<entity class=“com.acme.Customer”>
<attributes>

<id name=“id”/>
<basic name=“c_rating”>

<column name=“CREDIT”/>
</basic>
<basic name=“photo”><lob/></basic>

</attributes>
</entity>

Simple MappingsSimple Mappings

• Common relationship mappings supported
@ManyToOne, @OneToOne—single entity
@OneToMany, @ManyToMany—collection of entities

• Unidirectional or bidirectional
• Owning and inverse sides of every bidirectional

relationship
• Owning side specifies the physical mapping

@JoinColumn to specify foreign key column
@JoinTable decouples physical relationship mappings
from entity tables

Relationship MappingsRelationship Mappings

public class Sale {

int id;

...

Customer cust;
}
}

SALE
CUST_IDID

CUSTOMER
. . .ID

@Entity

@ManyToOne

@Id
. . .

ManyToOne MappingManyToOne Mapping

<entity class=“com.acme.Sale”>
<attributes>

<id name=“id”/>
...
<many-to-one name=“cust”/>

</attributes>
</entity>

ManyToOne MappingManyToOne Mapping

public class Sale {

int id;
...

Customer cust;
}

public class Customer {

int id;
...

Set<Sale> sales;
}

CUSTOMER
ID . . .

SALE
CUST_IDID . . .

@Entity

@ManyToOne

@Id

@Entity

@Id

@OneToMany(mappedBy=“cust”)

OneToMany MappingOneToMany Mapping

<entity class=“com.acme.Customer”>
<attributes>

<id name=“id”/>
...

<one-to-many name=“sales” mapped-by=“cust”/>
</attributes>

</entity>

OneToMany MappingOneToMany Mapping

Persistence in Java SEPersistence in Java SE

• No deployment phase
• Application must use a “Bootstrap API” to

obtain an EntityManagerFactory
• Resource-local EntityManagers

• Application uses a local EntityTransaction
obtained from the EntityManager

• New application-managed persistence context for
each and every EntityManager
• No propagation of persistence contexts

Entity TransactionsEntity Transactions

• Only used by Resource-local EntityManagers
• Isolated from transactions in other

EntityManagers
• Transaction demarcation under explicit

application control using EntityTransaction API
begin(), commit(), rollback(), isActive()

• Underlying (JDBC) resources allocated by
EntityManager as required

javax.persistence.Persistence

javax.persistence.EntityManagerFactory

• Creates EntityManagers for a named
persistence unit or configuration

Bootstrap ClassesBootstrap Classes

• Root class for bootstrapping an EntityManager
• Locates provider service for a named persistence unit
• Invokes on the provider to obtain an

EntityManagerFactory

ExampleExample

public class PersistenceProgram {
public static void main(String[] args) {

EntityManagerFactory emf = Persistence
.createEntityManagerFactory(“SomePUnit”);

EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
// Perform finds, execute queries,
// update entities, etc.
em.getTransaction().commit();
em.close();
emf.close();

}
}

IDE SupportIDE Support

• Eclipse “Dali” project (http://www.eclipse.org/dali)
JPA support
Oracle (project lead), BEA, JBoss, Versant

• NetBeans (http://community.java.net/netbeans)
EJB 3.0 support including JPA (Beta 2)
Sun

• JDeveloper (http://otn.oracle.com/jdev)
EJB 3.0 support including JPA (10.1.3.1)
Oracle

• All 3 were developed against the JPA RI

JPA emerged from best practices of existing best
of breed ORM products
Lightweight persistent POJOs, no extra baggage
Simple, compact and powerful API
Standardized object-relational mapping
metadata specified using annotations or XML
Feature-rich query language
Java EE integration, additional API for Java SE
“Industrial strength” Reference Implementation

SummarySummary

Broad persistence standardization, mass vendor
adoption and sweeping community acceptance
show that we finally have an enterprise
persistence standard in the Java Persistence API

SummarySummary

JPA RI (TopLink Essentials) on Glassfish
http://glassfish.dev.java.net/javaee5/persistence

JPA white papers, tutorials and resources
http://otn.oracle.com/jpa

Pro EJB 3: Java Persistence API

Mike Keith & Merrick Schincariol
(Apress)

Links and ResourcesLinks and Resources

