
COP with Qi4j

Rickard Öberg, Jayway

Agenda

:: What is Qi4j?

:: Describe problems that Qi4j solves

:: Explain Composite Oriented Programming

:: Composites

:: Structures

:: Properties and Associations

What is Qi4j?

What is Qi4j?
:: Qi4j is an implementation of Composite

Oriented Programming (COP) on the Java
platform

What is Qi4j?
:: Qi4j is an implementation of Composite

Oriented Programming (COP) on the Java
platform

:: COP is a programming model that allows
creation of rich domain models

What is Qi4j?
:: Qi4j is an implementation of Composite

Oriented Programming (COP) on the Java
platform

:: COP is a programming model that allows
creation of rich domain models

:: A rich domain model requires objects to
adapt to many different contexts

What is Qi4j?
:: Qi4j is an implementation of Composite

Oriented Programming (COP) on the Java
platform

:: COP is a programming model that allows
creation of rich domain models

:: A rich domain model requires objects to
adapt to many different contexts

:: Qi4j is nothing new. It is an evolutionary next
step based on existing patterns and ideas

Shaky foundation

DB

O/R map

Component
framework

Domain model

Flipping the pyramid

Flipping the pyramid

:: Start with the business problem

Flipping the pyramid

:: Start with the business problem

:: Use the terminology from Domain Driven
Design

Flipping the pyramid

:: Start with the business problem

:: Use the terminology from Domain Driven
Design

:: Allow developer to implement model directly
in code using that terminology

Flipping the pyramid

:: Start with the business problem

:: Use the terminology from Domain Driven
Design

:: Allow developer to implement model directly
in code using that terminology

:: Use infrastructure that can adapt to these
needs

Context ignorance

Context ignorance

:: Objects are gooooood

:: In the world we can find and talk about
objects

Context ignorance

:: Objects are gooooood

:: In the world we can find and talk about
objects

:: Classes are baaaaaaad

:: Classification is context sensitive

Context awareness

Context awareness

:: Objects need different interfaces for each
context

Context awareness

:: Objects need different interfaces for each
context

:: Compose objects from parts implementing
those interfaces

Context awareness

:: Objects need different interfaces for each
context

:: Compose objects from parts implementing
those interfaces

:: Each part helps the object interact with a
specific context

Maintenance Hell

Maintenance Hell

:: “The only constant in the Universe is change”
- Albert Einstein

Maintenance Hell

:: “The only constant in the Universe is change”
- Albert Einstein

:: Inability to deal with change

Maintenance Hell

:: “The only constant in the Universe is change”
- Albert Einstein

:: Inability to deal with change

:: Refactoring limitations

Maintenance Hell

:: “The only constant in the Universe is change”
- Albert Einstein

:: Inability to deal with change

:: Refactoring limitations

:: Data schema evolution problems

Maintenance Hell

:: “The only constant in the Universe is change”
- Albert Einstein

:: Inability to deal with change

:: Refactoring limitations

:: Data schema evolution problems

:: Growing codebase complexity

Living with change

Living with change
:: Keep domain model definitions in

refactorable artifacts (i.e. code)

Living with change
:: Keep domain model definitions in

refactorable artifacts (i.e. code)

:: Express queries using domain model

Living with change
:: Keep domain model definitions in

refactorable artifacts (i.e. code)

:: Express queries using domain model

:: Separation of storage and indexing

Living with change
:: Keep domain model definitions in

refactorable artifacts (i.e. code)

:: Express queries using domain model

:: Separation of storage and indexing

:: Store object version and schema version with
each object

Living with change
:: Keep domain model definitions in

refactorable artifacts (i.e. code)

:: Express queries using domain model

:: Separation of storage and indexing

:: Store object version and schema version with
each object

:: Encourage reuse

Living with change
:: Keep domain model definitions in

refactorable artifacts (i.e. code)

:: Express queries using domain model

:: Separation of storage and indexing

:: Store object version and schema version with
each object

:: Encourage reuse

:: Structural declaration and visualization

We need change

:: What we have now doesn’t work

:: How can we make something new that
reuses the good ideas and avoids the bad?

There are good ideas

There are good ideas

Aspect Oriented Programming

Scripting Dependency Injection

Domain Driven Design

Aspect Oriented Programming

Scripting Dependency Injection

Domain Driven Design

What if we put
 it all together?

Composite Oriented Programming

Terminology

Class

Class

Interceptor

Terminology

Class

Advice

Terminology

Class

SideEffect

Concern

Constraint

Terminology

InterceptorAdviceSideEffect

Concern

Constraint

Terminology

InterceptorAdviceSideEffect

Concern

Constraint

Terminology

Mixin Mixin Mixin

InterceptorAdviceSideEffect

Concern

Constraint

Terminology

Mixin

Mixin MixinProperty

Property

Association

Composite

InterceptorAdviceSideEffect

Concern

Constraint

Terminology

Mixin

Mixin MixinProperty

Property

Association

The Small Picture

The Small Picture

:: The most basic element in Qi4j is the
Composite

The Small Picture

:: The most basic element in Qi4j is the
Composite

:: A Composite is created by composing a
number of Fragments.

The Small Picture

:: The most basic element in Qi4j is the
Composite

:: A Composite is created by composing a
number of Fragments.

:: Mixins are Fragments that can handle method
invocations

The Small Picture

:: The most basic element in Qi4j is the
Composite

:: A Composite is created by composing a
number of Fragments.

:: Mixins are Fragments that can handle method
invocations

:: Modifiers are Fragments that modify method
invocations (Decorator pattern)
:: Constraints, Concern, SideEffects

The Big Picture

The Big Picture

:: Composites define the internals of objects

The Big Picture

:: Composites define the internals of objects

:: Composites resides in Modules

The Big Picture

:: Composites define the internals of objects

:: Composites resides in Modules

:: Modules can be grouped into Layers

The Big Picture

:: Composites define the internals of objects

:: Composites resides in Modules

:: Modules can be grouped into Layers

:: Layers form an Application

The Big Picture

:: Composites define the internals of objects

:: Composites resides in Modules

:: Modules can be grouped into Layers

:: Layers form an Application

:: Visibility of Composites between structures
is controlled

Structure
Application

Layer

Layer Layer

M M M

MMM

Layer Layer M MM

@Mixins({PropertyMixin.class, AssociationMixin.class})
public interface CarComposite
 extends Composite, Car
{}

public interface Car
 extends Startable, HasWheels, HasEngine, HasOwner
{}

public interface HasOwner
{
 Association<Owner> owner();
}

public interface HasEngine
{
 Property<Engine> engine();
}

public interface PersonComposite
 extends Composite, Person, Owner
{}

public interface CompanyComposite
 extends Composite, Company, Owner
{}

public interface Owner
{
 ManyAssociation<HasOwner> owned();
}

@Concerns
:: Concerns intercept method calls

:: “around advice” in AOP

:: Allowed to modify arguments and return
values

:: Allowed to return without calling next in
chain

:: Allowed to throw exceptions

@Mixins({PropertyMixin.class, AssociationMixin.class})
@Concerns({CheckClutchConcern.class})
public interface CarComposite
 extends Composite, Car, Startable
{}

public abstract class CheckClutchConcern
 implements Startable
{
 @ConcernFor Startable next;
 @ThisCompositeAs ClutchStatus clutch;

 public boolean start()
 {
 if (!clutch.engaged().get())
 return false;

 return next.start();
 }
}

@Constraints

:: Constraints validates method arguments

:: Can have many Constraints per argument

:: Uses annotations to trigger

:: Cooperate with concern for failure actions

@Mixins({PropertyMixin.class, AssociationMixin.class})
@Constraints({FreshOilConstraint.class})
public interface CarComposite
 extends Composite, Car
{}

public class FreshOilConstraint
 implements Constraint<CheckOil,Oil>
{
 private static final long YEAR = 365*24*3600*1000;

 public boolean isValid(CheckOil annotation, Oil oil)
 {
 Date now = new Date();
 Date expiry = new Date(now.getTime()-YEAR*3);
 return oil.productionDate().get().after(expiry);
 }
}

public void refillOil(@CheckOil Oil oil);

@SideEffects

:: Side-effects are called after a method call has
finished

:: Cannot change method arguments or return
value

:: Cannot throw exceptions

:: Can inspect exceptions and return values

:: May be asychronous

@Mixins({PropertyMixin.class, AssociationMixin.class})
@SideEffects({StartRadioSideEffect.class})
public interface CarComposite
 extends Composite, Car
{}

public abstract class StartRadioSideEffect
 implements Startable
{
 @SideEffectFor Startable next;
 @ThisCompositeAs HasRadio radio;

 public boolean start()
 {
 radio.radio().get().start();
 return null; // Ignored anyway
 }
}

@Mixins

:: Implements Composite interfaces

:: A Mixin may implement one interface, many
interfaces, or only some methods

:: May contain Composite state, such as
Property and Association instances

:: May be Composite private - not exposed in
Composite interface

@Mixins({DistanceToEmptyMixin.class,
PropertyMixin.class, AssociationMixin.class})
public interface CarComposite
 extends Composite, Car
{}

public abstract class DistanceToEmptyMixin
 implements Car
{
 @ThisCompositeAs HasFuelTank tank;
 @ThisCompositeAs HasFuelConsumption fc;

 public long computeDistanceToEmpty()
 {
 FuelTank fuelTank = tank.fuelTank().get();
 long fuel = fuelTank.fuelLeft().get();
 long consumption = fc.get().current().get();
 return fuel / consumption;
 }
}

Summing up

Summing up

:: Business first ➙ Domain Driven Design

Summing up

:: Business first ➙ Domain Driven Design

:: Embrace change ➙ Refactoring friendly

Summing up

:: Business first ➙ Domain Driven Design

:: Embrace change ➙ Refactoring friendly

:: Reduce complexity ➙ Reuse by composition

Summing up

:: Business first ➙ Domain Driven Design

:: Embrace change ➙ Refactoring friendly

:: Reduce complexity ➙ Reuse by composition

:: Classes are dead ➙ Long live interfaces

Summing up

:: Business first ➙ Domain Driven Design

:: Embrace change ➙ Refactoring friendly

:: Reduce complexity ➙ Reuse by composition

:: Classes are dead ➙ Long live interfaces

:: All of the above ➙ Qi4j ☺

Community
:: www.qi4j.org

:: Only in Subversion, no releases (yet)

:: Open participation policy

:: Get involved!

Questions?

