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Agenda

:: What is Qi4j?

:: Describe problems that Qi4j solves

:: Explain Composite Oriented Programming

:: Composites

:: Structures

:: Properties and Associations
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What is Qi4j?
:: Qi4j is an implementation of Composite 

Oriented Programming (COP) on the Java 
platform

:: COP is a programming model that allows 
creation of rich domain models

:: A rich domain model requires objects to 
adapt to many different contexts

:: Qi4j is nothing new. It is an evolutionary next 
step based on existing patterns and ideas



Shaky foundation

DB

O/R map

Component 
framework

Domain model
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Flipping the pyramid

:: Start with the business problem

:: Use the terminology from Domain Driven 
Design

:: Allow developer to implement model directly 
in code using that terminology

:: Use infrastructure that can adapt to these 
needs
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Context ignorance

:: Objects are gooooood

:: In the world we can find and talk about 
objects

:: Classes are baaaaaaad

:: Classification is context sensitive
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Context awareness

:: Objects need different interfaces for each 
context

:: Compose objects from parts implementing 
those interfaces

:: Each part helps the object interact with a 
specific context
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Maintenance Hell

:: “The only constant in the Universe is change”
- Albert Einstein

:: Inability to deal with change

:: Refactoring limitations

:: Data schema evolution problems

:: Growing codebase complexity
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Living with change
:: Keep domain model definitions in 

refactorable artifacts (i.e. code)

:: Express queries using domain model

:: Separation of storage and indexing

:: Store object version and schema version with 
each object

:: Encourage reuse

:: Structural declaration and visualization



We need change

:: What we have now doesn’t work

:: How can we make something new that 
reuses the good ideas and avoids the bad?
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Aspect Oriented Programming

Scripting Dependency Injection

Domain Driven Design

What if we put
 it all together?



Composite Oriented Programming
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The Small Picture

:: The most basic element in Qi4j is the 
Composite

:: A Composite is created by composing a 
number of Fragments. 

:: Mixins are Fragments that can handle method 
invocations

:: Modifiers are Fragments that modify method 
invocations (Decorator pattern)
:: Constraints, Concern, SideEffects
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The Big Picture

:: Composites define the internals of objects

:: Composites resides in Modules

:: Modules can be grouped into Layers

:: Layers form an Application

:: Visibility of Composites between structures 
is controlled



Structure
Application

Layer

Layer Layer
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@Mixins({PropertyMixin.class, AssociationMixin.class})
public interface CarComposite
  extends Composite, Car
{}

public interface Car
  extends Startable, HasWheels, HasEngine, HasOwner
{}

public interface HasOwner
{
  Association<Owner> owner();
}

public interface HasEngine
{
  Property<Engine> engine();
}



public interface PersonComposite
  extends Composite, Person, Owner
{}

public interface CompanyComposite
  extends Composite, Company, Owner
{}

public interface Owner
{
  ManyAssociation<HasOwner> owned();
}



@Concerns
:: Concerns intercept method calls

:: “around advice” in AOP

:: Allowed to modify arguments and return 
values

:: Allowed to return without calling next in 
chain

:: Allowed to throw exceptions



@Mixins({PropertyMixin.class, AssociationMixin.class})
@Concerns({CheckClutchConcern.class})
public interface CarComposite
  extends Composite, Car, Startable
{}

public abstract class CheckClutchConcern
  implements Startable
{
  @ConcernFor Startable next;
  @ThisCompositeAs ClutchStatus clutch;

  public boolean start()
  {
    if (!clutch.engaged().get())
      return false;

    return next.start(); 
  }
}



@Constraints

:: Constraints validates method arguments

:: Can have many Constraints per argument

:: Uses annotations to trigger

:: Cooperate with concern for failure actions



@Mixins({PropertyMixin.class, AssociationMixin.class})
@Constraints({FreshOilConstraint.class})
public interface CarComposite
  extends Composite, Car
{}

public class FreshOilConstraint
  implements Constraint<CheckOil,Oil>
{
  private static final long YEAR = 365*24*3600*1000;

  public boolean isValid(CheckOil annotation, Oil oil)
  {
    Date now = new Date();
    Date expiry = new Date(now.getTime()-YEAR*3);
    return oil.productionDate().get().after(expiry);
  }
}

public void refillOil(@CheckOil Oil oil);



@SideEffects

:: Side-effects are called after a method call has 
finished

:: Cannot change method arguments or return 
value

:: Cannot throw exceptions

:: Can inspect exceptions and return values

:: May be asychronous



@Mixins({PropertyMixin.class, AssociationMixin.class})
@SideEffects({StartRadioSideEffect.class})
public interface CarComposite
  extends Composite, Car
{}

public abstract class StartRadioSideEffect
  implements Startable
{
  @SideEffectFor Startable next;
  @ThisCompositeAs HasRadio radio;
  
  public boolean start()
  {
    radio.radio().get().start();
    return null; // Ignored anyway
  }
}



@Mixins

:: Implements Composite interfaces

:: A Mixin may implement one interface, many 
interfaces, or only some methods

:: May contain Composite state, such as 
Property and Association instances

:: May be Composite private - not exposed in 
Composite interface



@Mixins({DistanceToEmptyMixin.class, 
PropertyMixin.class, AssociationMixin.class})
public interface CarComposite
  extends Composite, Car
{}

public abstract class DistanceToEmptyMixin
  implements Car
{
  @ThisCompositeAs HasFuelTank tank;
  @ThisCompositeAs HasFuelConsumption fc;
  
  public long computeDistanceToEmpty()
  {
    FuelTank fuelTank = tank.fuelTank().get();
    long fuel = fuelTank.fuelLeft().get();
    long consumption = fc.get().current().get();
    return fuel / consumption;
  }
}
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Summing up

:: Business first ➙ Domain Driven Design

:: Embrace change ➙ Refactoring friendly

:: Reduce complexity ➙ Reuse by composition

:: Classes are dead ➙ Long live interfaces

:: All of the above ➙ Qi4j ☺



Community
:: www.qi4j.org

:: Only in Subversion, no releases (yet)

:: Open participation policy

:: Get involved!

Questions?


