
Five Considerations for Five Considerations for
Software DevelopersSoftware Developers

kevlin@curbralan.comkevlin@curbralan.com
Kevlin HenneyKevlin Henney

Presented at Jfokus, Stockholm, 30th January 2008.

Kevlin Henney
kevlin@curbralan.com
kevlin@acm.org

Curbralan Ltd
http://www.curbralan.com

Voice: +44 117 942 2990
Fax: +44 870 052 2289

22

AgendaAgenda

•• IntroductionIntroduction
•• Consideration 1Consideration 1: Economy: Economy
•• Consideration 2Consideration 2: Visibility: Visibility
•• Consideration 3Consideration 3: Spacing: Spacing
•• Consideration 4Consideration 4: Symmetry: Symmetry
•• Consideration 5Consideration 5: Emergence: Emergence
•• OutroductionOutroduction

What general qualities in a software architecture help to promote its
success? We can of course focus on fitness for purpose, cost of change,
organisational acceptance, and so on, but are there broad considerations
that can be kept in mind when looking at the structural and
developmental side of an architecture?
Those involved in software have a lot to keep in mind as they negotiate
the worlds inside and outside of their code and the relationship
between them. For those interested in improving the state of their art
there are many (many) sources of specific recommendations they can
use to sharpen their practice. This talk takes a step back from the busy,
overpopulated and often overwhelming world of such
recommendations to focus on five general considerations that can
inform more detailed recommendations and specific decisions.

33

IntroductionIntroduction

Structural engineering is the science and art of designing and making, with
economy and elegance, buildings, bridges, frameworks, and other similar
structures so that they can safely resist the forces to which they may be subjected.

The Institution of Structural Engineers

Structural engineering is the science and art of designing and making, with
economy and elegance, buildings, bridges, frameworks, and other similar
structures so that they can safely resist the forces to which they may be subjected.

The Institution of Structural Engineers

Software engineering is the science and art of designing and making, with
economy and elegance, applications, bridges, frameworks, and other similar
structures so that they can safely resist the forces to which they may be subjected.

A Definition for Software Engineers

44

Of Beer and CodeOf Beer and Code

•• Questions and answers...Questions and answers...
Who? Who? Frank Buschmann, Charles Weir and meFrank Buschmann, Charles Weir and me
When? When? OOPSLA, October, 2001OOPSLA, October, 2001
Where? Where? Four Green Fields, Tampa, FloridaFour Green Fields, Tampa, Florida
How? How? Because we wanted to avoid downtown, and Because we wanted to avoid downtown, and
Alan O'Callaghan suggested this placeAlan O'Callaghan suggested this place
What?What? Guinness! And, uh, a discussion on elegance Guinness! And, uh, a discussion on elegance
and style in code, which led to five considerationsand style in code, which led to five considerations
Why? Why? Because Charles asked an NPBecause Charles asked an NP--hard question hard question
and it seemed like a fun idea to find some answersand it seemed like a fun idea to find some answers

The five considerations under discussion stem from a discussion over
beer about qualities of code and coding that could easily be taught to
programmers.

55

Considering ConsiderationsConsidering Considerations

•• A consideration is not a ruleA consideration is not a rule
And it is also weaker than the conventional notion And it is also weaker than the conventional notion
of a recommendationof a recommendation
It is... a considerationIt is... a consideration

•• A consideration takes a point of viewA consideration takes a point of view
It may be general; it may be specificIt may be general; it may be specific

•• A system of considerations can offer a coherent A system of considerations can offer a coherent
and unified set of viewsand unified set of views

Together they can guide specific recommendationsTogether they can guide specific recommendations

Of course, it is important to distinguish between these qualities as hard
and fast rules — which they are not — and their role as considerations
in a balanced system of interacting considerations — which they are.
There is no claim that these are universal properties, just that together
they form a useful framework for discussing design, a vehicle for
relaying concepts.

66

Consideration 1Consideration 1: Economy: Economy

Continuing existence or cessation of existence: those are the scenarios. Is it more
empowering mentally to work towards an accommodation of the downsizings and
negative outcomes of adversarial circumstance, or would it be a greater
enhancement of the bottom line to move forwards to a challenge to our current
difficulties, and, by making a commitment to opposition, to effect their demise?

Tom Burton, Long Words Bother Me

Continuing existence or cessation of existence: those are the scenarios. Is it more
empowering mentally to work towards an accommodation of the downsizings and
negative outcomes of adversarial circumstance, or would it be a greater
enhancement of the bottom line to move forwards to a challenge to our current
difficulties, and, by making a commitment to opposition, to effect their demise?

Tom Burton, Long Words Bother Me

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

William Shakespeare, Hamlet

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

William Shakespeare, Hamlet

77

MaximalismMaximalism
interface Iterator
{

boolean set_to_first_element();
boolean set_to_next_element();
boolean set_to_next_nth_element(in unsigned long n) raises(…);
boolean retrieve_element(out any element) raises(…);
boolean retrieve_element_set_to_next(out any element, out boolean more) raises(…);
boolean retrieve_next_n_elements(in unsigned long n, out AnySequence result, out boolean more) raises(…);
boolean not_equal_retrieve_element_set_to_next(in Iterator test, out any element) raises(…);
void remove_element() raises(…);
boolean remove_element_set_to_next() raises(…);
boolean remove_next_n_elements(in unsigned long n, out unsigned long actual_number) raises(…);
boolean not_equal_remove_element_set_to_next(in Iterator test) raises(…);
void replace_element(in any element) raises(…);
boolean replace_element_set_to_next(in any element) raises(…);
boolean replace_next_n_elements(in AnySequence elements, out unsigned long actual_number) raises(…);
boolean not_equal_replace_element_set_to_next(in Iterator test, in any element) raises(…);
boolean add_element_set_iterator(in any element) raises(…);
boolean add_n_elements_set_iterator(in AnySequence elements, out unsigned long actual_number) raises(…);
void invalidate();
boolean is_valid();
boolean is_in_between();
boolean is_for(in Collection collector);
boolean is_const();
boolean is_equal(in Iterator test) raises(…);
Iterator clone();
void assign(in Iterator from_where) raises(…);
void destroy();

};

interface Iterator
{

boolean set_to_first_element();
boolean set_to_next_element();
boolean set_to_next_nth_element(in unsigned long n) raises(…);
boolean retrieve_element(out any element) raises(…);
boolean retrieve_element_set_to_next(out any element, out boolean more) raises(…);
boolean retrieve_next_n_elements(in unsigned long n, out AnySequence result, out boolean more) raises(…);
boolean not_equal_retrieve_element_set_to_next(in Iterator test, out any element) raises(…);
void remove_element() raises(…);
boolean remove_element_set_to_next() raises(…);
boolean remove_next_n_elements(in unsigned long n, out unsigned long actual_number) raises(…);
boolean not_equal_remove_element_set_to_next(in Iterator test) raises(…);
void replace_element(in any element) raises(…);
boolean replace_element_set_to_next(in any element) raises(…);
boolean replace_next_n_elements(in AnySequence elements, out unsigned long actual_number) raises(…);
boolean not_equal_replace_element_set_to_next(in Iterator test, in any element) raises(…);
boolean add_element_set_iterator(in any element) raises(…);
boolean add_n_elements_set_iterator(in AnySequence elements, out unsigned long actual_number) raises(…);
void invalidate();
boolean is_valid();
boolean is_in_between();
boolean is_for(in Collection collector);
boolean is_const();
boolean is_equal(in Iterator test) raises(…);
Iterator clone();
void assign(in Iterator from_where) raises(…);
void destroy();

};

This supposedly general-purpose and "reusable" interface is drawn
from the specifically unused CORBA Collections Service. Leaving aside
the issue of whether it makes sense to define a general-purpose
traversal interface for arbitrary collection objects on a network — it
doesn't — this interface makes an impressive meal of the apparently
simple task of iterating over a collection.
In Java and C# the methods on iterator interfaces can be counted on the
fingers of one hand. In C++ the diversity of iterator capabilities gives
rise to a whole style of programming that is based on efficiency and
directness of expression. Neither of these observations can be
considered true of the interface shown above, which uses vagueness
and indecision to justify an uncommitted, complex and singularly
inappropriate general-purpose interface for remote iteration. It is
perhaps worth noting that other CORBA services define iterators that
are significantly tighter and more sensible than — and significantly
unlike — the example above.

88

MinimalismMinimalism

•• Clarity is often achieved by reducing clutterClarity is often achieved by reducing clutter
But don't encode the codeBut don't encode the code

•• Compression can come from careful abstractionCompression can come from careful abstraction
Compression relates to directness of expressionCompression relates to directness of expression
Abstraction concerns the removal of certain detailAbstraction concerns the removal of certain detail

•• Abstraction is a matter of choice and quality of Abstraction is a matter of choice and quality of
abstraction relates to compression and clarityabstraction relates to compression and clarity

Of itself, abstraction is neither "good" nor "bad"Of itself, abstraction is neither "good" nor "bad"
Encapsulation is a vehicle for abstractionEncapsulation is a vehicle for abstraction

Abstraction is an essential skill in working with complex concepts:
information overload and distraction by unrelated items can be reduced
by filtering out inappropriate details and focusing on some essential
core aspects. The choice of details determines the quality of an
abstraction: a poor abstraction leaves too much in or removes the
wrong details.
Compression also arises from well considered composition, which
refocuses on the elements of composition, which in turn are the
products of a particular choice of abstraction. Compression and
abstraction are sometimes seen as opposites, but in truth they are
complements that balance a design through necessary tension:
sometimes in conflict; sometimes in reinforcement.
Abstraction is also balanced by its natural counterpart, concretion. In
searching for appropriate models, some of the detail removed by the
process of abstraction needs to be reintroduced at an appropriate level
or juncture.

99

JUTLAND: A Minimal ExperimentJUTLAND: A Minimal Experiment

•• Java Unit Testing: Light, Adaptable 'N' DiscreetJava Unit Testing: Light, Adaptable 'N' Discreet
A simple experiment and demonstration of design A simple experiment and demonstration of design
principles, as well as a teaching aidprinciples, as well as a teaching aid

•• Smaller than classic Smaller than classic JUnitJUnit, but less intrusive, , but less intrusive,
more extensible and more idiomaticmore extensible and more idiomatic

Smaller in terms of concepts, lines of code, classesSmaller in terms of concepts, lines of code, classes
Uses a plugUses a plug--in microin micro--architecture based on one of architecture based on one of
three kinds of interface: declared and static (listener three kinds of interface: declared and static (listener
and policy interfaces), exceptionand policy interfaces), exception--based (failure based (failure
detection) or introspected (test execution)detection) or introspected (test execution)

The JUTLAND framework is a simple unit-testing framework designed
to explore what a minimal and idiomatically designed unit-testing
framework for Java could look like.
Although relatively small and loosely coupled, JUnit has evolved to
become larger and more tightly coupled than is strictly necessary for
the task it undertakes. Classic JUnit also does not make the best use of
Java language features in its design. For example, common fixture
initialisation is via an overridden method, setUp, rather than taking
advantage of constructors, the natural vehicle for object initialisation.
Similarly, the intrusion of inheritance is also used for tearing down a
test fixture via tearDown, rather than using a reflected method.
Although it is based on a quite different approach, more like TestNG or
NUnit, JUnit 4 still carries the baggage of its predecessor versions, and
certain decisions are not obviously improvements.

1010

JUTLAND'sJUTLAND's NanokernelNanokernel
package jutland.kernel;
import java.lang.reflect.Method;
public class Tester implements Runnable
{

public Tester(TestListener listener, TestPolicy policy, Class... testClasses)
{

this.listener = listener;
this.testClasses = testClasses;
this.policy = policy;

}
public void run()
{

for(Class<?> testClass : testClasses)
{

if(testClass != null)
{

try
{

listener.startTestClass(testClass);
runTestClass(testClass);

}
catch(RuntimeException caught)
{

listener.testFault(caught);
}
finally
{

listener.endTestClass(testClass);
}

}
}

}
private void runTestClass(Class<?> testClass)
{

for(Method testMethod : testClass.getMethods())
{

if(policy.isTestMethod(testMethod))
{

try
{

listener.startTestMethod(testMethod);
runTestMethod(testClass, testMethod);

}
finally
{

listener.endTestMethod(testMethod);
}

}
}

}
...

package jutland.kernel;
import java.lang.reflect.Method;
public class Tester implements Runnable
{

public Tester(TestListener listener, TestPolicy policy, Class... testClasses)
{

this.listener = listener;
this.testClasses = testClasses;
this.policy = policy;

}
public void run()
{

for(Class<?> testClass : testClasses)
{

if(testClass != null)
{

try
{

listener.startTestClass(testClass);
runTestClass(testClass);

}
catch(RuntimeException caught)
{

listener.testFault(caught);
}
finally
{

listener.endTestClass(testClass);
}

}
}

}
private void runTestClass(Class<?> testClass)
{

for(Method testMethod : testClass.getMethods())
{

if(policy.isTestMethod(testMethod))
{

try
{

listener.startTestMethod(testMethod);
runTestMethod(testClass, testMethod);

}
finally
{

listener.endTestMethod(testMethod);
}

}
}

}
...

...
private void runTestMethod(Class<?> testClass, Method testMethod)
{

Class expectedException = policy.expectedException(testMethod);
Object testObject = null;
try
{

testObject = testClass.newInstance();
testMethod.invoke(testObject, (Object[]) null);
if(expectedException == null)

listener.testSuccess();
else

listener.testFailure(null);
}
catch(Throwable caught)
{

Throwable cause = caught.getCause();
if(cause == null)

listener.testFault(caught);
else if(expectedException != null && expectedException.isInstance(cause))

listener.testSuccess();
else

listener.testFailure(cause);
}
dispose(testClass, testObject);

}
private void dispose(Class<?> testClass, Object testObject)
{

if(testObject != null)
{

try
{

Method disposer = testClass.getMethod("dispose", (Class[]) null);
disposer.invoke(testObject, (Object[]) null);

}
catch(NoSuchMethodException caught)
{
}
catch(Throwable caught)
{

listener.testFault(caught);
}

}
}
private TestListener listener;
private TestPolicy policy;
private Class[] testClasses;

}

...
private void runTestMethod(Class<?> testClass, Method testMethod)
{

Class expectedException = policy.expectedException(testMethod);
Object testObject = null;
try
{

testObject = testClass.newInstance();
testMethod.invoke(testObject, (Object[]) null);
if(expectedException == null)

listener.testSuccess();
else

listener.testFailure(null);
}
catch(Throwable caught)
{

Throwable cause = caught.getCause();
if(cause == null)

listener.testFault(caught);
else if(expectedException != null && expectedException.isInstance(cause))

listener.testSuccess();
else

listener.testFailure(cause);
}
dispose(testClass, testObject);

}
private void dispose(Class<?> testClass, Object testObject)
{

if(testObject != null)
{

try
{

Method disposer = testClass.getMethod("dispose", (Class[]) null);
disposer.invoke(testObject, (Object[]) null);

}
catch(NoSuchMethodException caught)
{
}
catch(Throwable caught)
{

listener.testFault(caught);
}

}
}
private TestListener listener;
private TestPolicy policy;
private Class[] testClasses;

}

JUTLAND is based on a simple kernel of code responsible for executing
a number of test classes. Explicit policies, reflection and exceptions are
used to define the plug-in interfaces. Only the executable code in the
kernel is shown in the fragment above; the explicit interfaces of the
TestListener and TestPolicy can be deduced from the usage.
Note that the symmetric arrangement of elements within try finally
blocks is intentional not accidental: in many cases this symmetry would
be mistaken. In this case it ensures that an attempt is always to report
an episode, regardless of the quality of implementation of the listener
involved.

1111

grepgrep
int grep(char *regexp, FILE *f, char *name)
{

int n, nmatch;
char buf[BUFSIZ];

nmatch = 0;
while (fgets(buf, sizeof buf, f) != NULL) {

n = strlen(buf);
if (n > 0 && buf[n-1] == '\n')

buf[n-1] = '\0';
if (match(regexp, buf)) {

nmatch++;
if (name != NULL)

printf("%s:", name);
printf("%s\n", buf);

}
}
return nmatch;

}

int grep(char *regexp, FILE *f, char *name)
{

int n, nmatch;
char buf[BUFSIZ];

nmatch = 0;
while (fgets(buf, sizeof buf, f) != NULL) {

n = strlen(buf);
if (n > 0 && buf[n-1] == '\n')

buf[n-1] = '\0';
if (match(regexp, buf)) {

nmatch++;
if (name != NULL)

printf("%s:", name);
printf("%s\n", buf);

}
}
return nmatch;

}

int matchhere(char *regexp, char *text)
{

if (regexp[0] == '\0')
return 1;

if (regexp[1] == '*')
return matchstar(regexp[0], regexp+2, text);

if (regexp[0] == '$' && regexp[1] == '\0')
return *text == '\0';

if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
return matchhere(regexp+1, text+1);

return 0;
}

int match(char *regexp, char *text)
{

if (regexp[0] == '^')
return matchhere(regexp+1, text);

do {
if (matchhere(regexp, text))

return 1;
} while (*text++ != '\0');
return 0;

}

int matchstar(int c, char *regexp, char *text)
{

do {
if (matchhere(regexp, text))

return 1;
} while (*text != '\0' && (*text++ == c || c == '.'));
return 0;

}

int matchhere(char *regexp, char *text)
{

if (regexp[0] == '\0')
return 1;

if (regexp[1] == '*')
return matchstar(regexp[0], regexp+2, text);

if (regexp[0] == '$' && regexp[1] == '\0')
return *text == '\0';

if (*text!='\0' && (regexp[0]=='.' || regexp[0]==*text))
return matchhere(regexp+1, text+1);

return 0;
}

int match(char *regexp, char *text)
{

if (regexp[0] == '^')
return matchhere(regexp+1, text);

do {
if (matchhere(regexp, text))

return 1;
} while (*text++ != '\0');
return 0;

}

int matchstar(int c, char *regexp, char *text)
{

do {
if (matchhere(regexp, text))

return 1;
} while (*text != '\0' && (*text++ == c || c == '.'));
return 0;

}

This simple and simplified version of grep is taken from Kernighan
and Pike's The Practice of Programming.

1212

evaleval

(define (eval exp env)
(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

(define (eval exp env)
(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

This simple and simplified version of Scheme's eval is often used to
highlight the elegance of meta-circular approaches to language
interpretation.

1313

DecrementalDecremental DevelopmentDevelopment

•• Don't include the unused or repeat yourself like Don't include the unused or repeat yourself like
a broken record (or CD... whatever)a broken record (or CD... whatever)

Eliminate WasteEliminate Waste (Lean Development), (Lean Development), Don't Repeat Don't Repeat
YourselfYourself (Pragmatic Programming), (Pragmatic Programming), Once And Once Once And Once
OnlyOnly (Extreme Programming), (Extreme Programming), Omit Needless CodeOmit Needless Code
and and Unify Duplicate CodeUnify Duplicate Code (Programmer's Dozen)(Programmer's Dozen)

•• Refactoring, encapsulation and libraries are Refactoring, encapsulation and libraries are
tools that help in the search for the minimumtools that help in the search for the minimum

HillHill--descending techniquesdescending techniques
Refactoring is gradual, stable and goal orientedRefactoring is gradual, stable and goal oriented

To quote Dennis Ritchie and Ken Thompson:
There have always been fairly severe size constraints on the Unix
operating system and its software. Given the partially antagonistic
desires for reasonable efficiency and expressive power, the size
constraint has encouraged not only economy but a certain elegance
of design.

This perspective applies during the envisioning of a design, its
realisation and its reconsideration. The more code there is, the harder it
is to reason about. This suggests that the code of a system that goes into
production should be essential and focused on clear communication —
a view that is undermined by the view that code is a disposable
instruction to the machine rather than the machine a disposable means
to execute code.

1414

Consideration 2Consideration 2: Visibility: Visibility

Design involves assumptions about the future of the object designed, and the more
the future resembles the past the more accurate the assumptions are likely to be. But
designed objects themselves change the future into which they will age.

Henry Petroski, To Engineer is Human

Design involves assumptions about the future of the object designed, and the more
the future resembles the past the more accurate the assumptions are likely to be. But
designed objects themselves change the future into which they will age.

Henry Petroski, To Engineer is Human

1515

The Nature of SoftwareThe Nature of Software

•• Software exists in an abstract spaceSoftware exists in an abstract space
Absence of physicality makes its development hard Absence of physicality makes its development hard
to estimate accurately from our physical perspectiveto estimate accurately from our physical perspective
Any use of physical space for exposition or Any use of physical space for exposition or
representation is by necessity metaphoricalrepresentation is by necessity metaphorical

•• Practices need to emphasise making the Practices need to emphasise making the
invisible more visibleinvisible more visible

E.g. the role of a shared and recognised architectureE.g. the role of a shared and recognised architecture
E.g. the use of patterns in designE.g. the use of patterns in design
E.g. communicating intent in codeE.g. communicating intent in code

Although certainly structured, the space in which software is conceived
is not a physical one. This means that it is as neutral and open to many
forms of visualisation as it is susceptible to false metaphors and
invisibility. For example, when we draw parallels between software
concepts and the worlds of physics or building architecture, the
mapping between ideas is metaphorical rather than direct, which
means that in some cases ideas may correspond simply but falsely.
The absence of physicality and consequent loss of visibility also
presents problems when it comes to estimation of scope and scale of
tasks. Humans are geared up to perceive the world physically, so the
loss of physical dimension has us reaching for physically related
metaphors to navigate and estimate the world of software.
In this light, we can see that increasing visibility of the invisible or
implicit is a significant consideration in development. Significant
decisions and differences need to be emphasised and made more rather
than less obvious. The very notion of following idioms to highlight
familiar patterns of usage and structure, whether actual design patterns
or matters of convention such as naming, is in this vein. It is also worth
noting that many uses of the term idiom are not actually idiomatic, in
the sense that they are not the practice common to a significant
grouping of people or that they are actually foreign rather than
idiomatic usage, i.e. borrowed in from other languages. Many "idioms"
are just techniques whose authors aspire for them to be idiomatic.

1616

Visibility in Development ProcessesVisibility in Development Processes

•• Open source and agile development place Open source and agile development place
value on visible steps and the use of feedbackvalue on visible steps and the use of feedback

Architectural progress is visible and empiricalArchitectural progress is visible and empirical
•• Incremental development is based on stepped Incremental development is based on stepped

progression and accumulationprogression and accumulation
Don't just iterate, come up with something!Don't just iterate, come up with something!

•• ScenarioScenario--driven development focuses on usable driven development focuses on usable
functionality as the measure of an incrementfunctionality as the measure of an increment

Don't just produce stuff, produce usable stuff!Don't just produce stuff, produce usable stuff!

The empirical nature of software development is in contrast to the
defined nature of many processes that have been (and still are) often
applied to software development. The contrast is one that inevitably
creates mismatch and tension between "predicted" outcomes and
schedules and actual development. The open and uncertain nature of
the many forces on software development, whether technical or
functional, suggests that a development process needs to expose rather
than smother risks and uncertainties, and to make its progress visible in
terms that can be considered meaningful and faithful.
Even if news on progress is bad news, it is better to have this than no
news, and more honest than wrong news. Reasonable decisions cannot
be taken in the absence of accurate information. Decisions on progress
and direction need to be taken on many different time scales, which
suggests that feedback loops at different levels of development and
orders of time are essential to ensure accuracy, whether minute to
minute or month to month.
Iterative and incremental lifecycles navigate development based on
such feedback looks, with agile processes taking the next step by
ensuring a rich network of feedback at different scales. Scenario-driven
development, whether through stories or use cases, ensures that macro-
development steps are taken primarily in terms of visible functionality
and not software artefacts, which have less visibility to stakeholders.

1717

Concretion of Implied ConceptsConcretion of Implied Concepts

•• Discovery of types for values, management and Discovery of types for values, management and
control, collectives, domains, etccontrol, collectives, domains, etc

Implied concepts or collocated capabilities can be Implied concepts or collocated capabilities can be
made more visible by recognising these as objects of made more visible by recognising these as objects of
distinct and explicit types, i.e. usage becomes typedistinct and explicit types, i.e. usage becomes type

•• For example...For example...
Strings for keys and codes become types in their Strings for keys and codes become types in their
own right, e.g. ISBNs, SQL statements, URLsown right, e.g. ISBNs, SQL statements, URLs
Recurring value groupings become whole objectsRecurring value groupings become whole objects
Behaviour based on Behaviour based on staticstaticss implies a manager objectimplies a manager object

There are often implied concepts in code. For instance, few examples of
int in code are actually just plain 32-bit signed integers free of
interpretation. There is often an implied and associated concept being
represented. This is often made clear(er) by their naming, context and
usage. However, sometimes the enforcement of this implied concept is
tedious and the visibility of the concept low.
Although ISBNs may reasonably be communicated via strings, this is
not necessarily the best in-program representation for their
manipulation. They are not arbitrary strings free of constraints and
interpretation, so wrapping a string in a type that enforces their well
formedness increases the visibility of the concept in the code, making
the implicit explicit. It also reduces duplicate code and unspoken
assumptions, and increases opportunities for change of representation.
Likewise, groupings of individual items that are passed around
together and treated as a whole — e.g. three integers representing a
date — or where the grouping is more stable than the stability of the
individual items — "If you have a procedure with ten parameters, you
probably missed one" (Alan Perlis) — suggest encapsulation of the
concept as a named type rather than as a ragtag assortment of
individual values.

1818

Consideration 3Consideration 3: Spacing: Spacing

"That's a great deal to make one word mean," Alice said in a thoughtful tone.
"When I make a word do a lot of work like that," said Humpty Dumpty, "I always
pay it extra."

Lewis Carrol, Through the Looking-Glass, and What Alice Found There

"That's a great deal to make one word mean," Alice said in a thoughtful tone.
"When I make a word do a lot of work like that," said Humpty Dumpty, "I always
pay it extra."

Lewis Carrol, Through the Looking-Glass, and What Alice Found There

1919

Locality and SeparationLocality and Separation

•• Spacing introduces separation between parts, Spacing introduces separation between parts,
making parts more distinct and focusedmaking parts more distinct and focused

The conceptual spacing between componentsThe conceptual spacing between components
•• Agility is not just about process, organisation, Agility is not just about process, organisation,

tools, skills and attitude: architecture matterstools, skills and attitude: architecture matters
Most systems are rife with coupling and excusesMost systems are rife with coupling and excuses

•• Class hierarchies can become so jammed with Class hierarchies can become so jammed with
purpose as to cause cognitive gridlockpurpose as to cause cognitive gridlock

E.g. inheritance layers from infrastructure to domainE.g. inheritance layers from infrastructure to domain

With perhaps the exception of user interfaces, any discussion of space
in software is inevitably based on a metaphorical view rather than one
that is perceived directly through human senses. Diving too deeply into
this metaphor without coming up for a reality check can lead to some
false conclusions. However, there is still plenty of depth to be had.
Spacing is present in many aspects of software and its development,
whether in the literal interpretation of spacing in source code or the
more conceptual spacing to be found in separating concerns in module
design. Of course, there is a balance to be found: don't get lost in
whitespace or fragments.
Spacing can enhance visibility, letting each concept stand alone and
more clearly distinct from others. For example, spacing is what divides
uncohesive wholes into more cohesive individual parts, each more
clearly understood. The loosening of coupling is also an act of
introducing space between parts. And, of course, with spacing comes
boundaries and, therefore, interfaces. Such separations support parallel
work, stable protocols, simplified testing and the ability to change the
parts behind the interfaces freely and independently.
In terms of cohesion, placing definitions all together in a single place
reduces visibility and overwhelms any sense of locality. Spacing
definitions apart, e.g. in separate files, improves both visibility and
locality, assuming that the spacing is not arbitrary. On the other hand,
too much spacing leads to a loss of visibility, i.e. fragmentation.

2020

Infrastructure + Services + DomainInfrastructure + Services + Domain

InfrastructureInfrastructure
Plumbing and service Plumbing and service
foundations introduced in foundations introduced in
root layer of the hierarchy.root layer of the hierarchy.

ServicesServices
Services adapted and Services adapted and
extended appropriately for extended appropriately for
use by the domain classes.use by the domain classes.

DomainDomain
Application domain concepts Application domain concepts
modelled and represented modelled and represented
with respect to extension of with respect to extension of
root infrastructure.root infrastructure.

The class hierarchy shown above is not an uncommon approach to
organising hierarchies, with infrastructural plumbing at the root,
additional adaptation beneath that, before reaching the actual domain
classes of interest. This does exhibit layering of concepts, and therefore
some spacing between them, in a way not found in hierarchies that
mash incidental detail, plumbing and domain concepts together.
However, this use of inheritance to accumulate through layers steadily
increases the dependencies that any leaf class — and its authors, clients
and tests — must contend with. So, in spite of its other qualities of
separation, there is a degree of hierarchy lock-in and overhead that
arises from insufficient separation between the conceptual layers.

2121

Domain Domain ×× Services Services ×× InfrastructureInfrastructure
InfrastructureInfrastructure
Plumbing and service Plumbing and service
foundations for use foundations for use
as selfas self--contained contained
plugplug--ins.ins.

ServicesServices
Services adapted Services adapted
appropriately for appropriately for
use by the domain use by the domain
classes.classes.

DomainDomain
Application domain Application domain
concepts modelled and concepts modelled and
represented with respect represented with respect
to plugto plug--in services.in services.

concept

realisation

Space through separation and composition offers orthogonality and
greater composability. The focus is more naturally on the domain first
and infrastructure as a tertiary detail, and not necessarily one that has
to intrude much past the services layer. Delegation through conceptual
roots expressed as pure interfaces leads to a stricter and more separated
layering that is more supple.
Orthogonality is often the key to unblocking the obstacles arising from
information overload. So, favour Strategy and other pluggable
approaches that push behaviour out of a class hierarchy over those that
push behaviour down, such as Template Method, and split classes and
hierarchies along role lines.

2222

Inversion LayersInversion Layers

•• Dependency inversion eliminates the transitive Dependency inversion eliminates the transitive
dependencies of many layered architecturesdependencies of many layered architectures

Leads to a more testable, plugLeads to a more testable, plug--in design stylein design style

DatabaseCoreUI

DatabaseCoreUI

Inversion Layer

Simple Simple
layeringlayering

Layering Layering
with with
inversioninversion

Moving to a design where essential dependencies are visible and
nonessential ones hidden can be considered a common soundbite
behind much OO thinking. However, the approach advocated here is
stronger than the usual approach: place an object or group of objects at
the centre of their own apparent universe, with clear spacing between
them and any external dependencies, bridging through self-centred
interfaces rather than concrete types. A self-centred interface is one that
is defined by the object demanding the services rather than one defined
by a separate party and adopted by an object. Such selfishness leads to
a highly localised, open and testable architectural style, sidestepping
the problems of Singleton objects and the transitive coupling through
layers common in many architectures.
Some developers have already come across this style in the context of
introducing Mock Objects for testing database dependencies, or the use
of Dependency Injection in the context of specific middleware
platforms, or the choice to base a system's extension on plug-ins.
However, this approach applies more broadly than each of these
specific instances. A more object self-centred approach to class design
should generally — not just specifically — be considered the way to do
business with objects. It leaves more space to think, to breathe and to
change one's mind. It also helps to contain assumptions and reduce the
span of changes. There is considerable evidence that span of changes is
broadly indicative of system health, i.e. shotgun maintenance.

2323

Consideration 4Consideration 4: Symmetry: Symmetry

Due or just proportion; harmony of parts with each other and the whole; fitting,
regular, or balanced arrangement and relation of parts or elements; the condition or
quality of being well-proportioned or well-balanced. In stricter use [...]: Exact
correspondence in size and position of opposite parts; equable distribution of parts
about a dividing line or centre. (As an attribute either of the whole, or of the parts
composing it.)

Oxford English Dictionary

Due or just proportion; harmony of parts with each other and the whole; fitting,
regular, or balanced arrangement and relation of parts or elements; the condition or
quality of being well-proportioned or well-balanced. In stricter use [...]: Exact
correspondence in size and position of opposite parts; equable distribution of parts
about a dividing line or centre. (As an attribute either of the whole, or of the parts
composing it.)

Oxford English Dictionary

2424

In Search of BalanceIn Search of Balance

•• Symmetry is with respect to an aspect, a point Symmetry is with respect to an aspect, a point
of view, a part, a domain, a formalism, etcof view, a part, a domain, a formalism, etc

Symmetry has various definitions, ranging from a Symmetry has various definitions, ranging from a
formal view of invariance to a more everyday one formal view of invariance to a more everyday one
based on completeness, consistency and balancebased on completeness, consistency and balance

•• Making symmetry is significantly more Making symmetry is significantly more
important to most designs than breaking itimportant to most designs than breaking it

It is sometimes easy to see one as the other It is sometimes easy to see one as the other —— many many
examples of symmetry breaking from one point of examples of symmetry breaking from one point of
view are examples of preservation from anotherview are examples of preservation from another

Just as symmetry should not be overplayed, neither should asymmetry
or the reduction of symmetry be presented as an end goal or virtuous
destination of design. Perfect symmetry is not only difficult to achieve:
in software development it is also somewhat difficult to define!
However, blindly breaking symmetry is unlikely to have a useful effect:
experience suggests that most software systems are in need of more
rather than less symmetry.
In software, as in physics, symmetry breaking is an effect rather than a
cause, so we must look deeper. We can see many examples where the
recognition and fixing of a broken symmetry has led to an
improvement. For example, regularity of naming convention and
argument lists emphasises likeness through likeness of form. Its
informational nature makes software more easily reversible than the
real world, so time's arrow need not command the same reverence it
does in the real world: actions can be undone or redone with impunity.
Symmetry breaking has an important role to play, but one that is
subordinate to the making of symmetry in a practical domain so often
lacking in it. A disproportionate number of API design problems can be
characterised in terms of broken symmetry. Some problems have
competing symmetric and asymmetric solutions. For example, in the
problem of the dining philosophers one solution is to break symmetry
by requiring that one philosopher uses a different hand to the others,
and another is to make the abstract concept of management concrete,
i.e. introduce a waiter.

2525

In Search of AlignmentIn Search of Alignment

•• Alignment between two domains or views is a Alignment between two domains or views is a
common form of symmetrycommon form of symmetry

"The elements of symmetry of the causes are to be "The elements of symmetry of the causes are to be
found in the effects produced" (Pierre Curie)found in the effects produced" (Pierre Curie)

•• For example...For example...
Aligning problem and solution domains (e.g. Aligning problem and solution domains (e.g. DSLsDSLs))
Aligning architecture and organisational structure Aligning architecture and organisational structure
(Conway's "Law")(Conway's "Law")
Aligning architectural partitioning and stabilityAligning architectural partitioning and stability

A correspondence in structure between the domain of the problem and
the domain of the solution, i.e. modelarity, makes comprehension of the
designed modular structure and the problem domain easier. Do not
underestimate the pressure that a desire for alignment can exert on
design and other concepts or artefacts in use. This is as true in everyday
life as it is in software.
For example, island and isle are conceptually related and, one would
assume, etymologically related. However, they are false cognates, with
isle influencing the spelling of island: isle came to Middle English via
Old French (ile, now île in Modern French) from the Latin (isle, from
insula); island came from Old English igland (or egland or eigland), where
ig itself meant island, via Middle English ilond. A similar effect can be
seen today in the increasing tendency to spell (and recognise as correct)
the spelling of minuscule as miniscule, after the increasingly common
pattern of the mini- prefix.
We can also see alignment in the evolution of old measurement units.
Unrelated units tend to align with one another over time, especially
when subject to other forces, e.g. monetary. For example, in the reign of
Elizabeth I the English mile was lengthened by nearly a tenth from its
traditional Roman length to one that aligned more conveniently with
the perch, the unit used to measure land and define ownership.
Regularity and irregularity explains why children tend take longer to
learn how to use strong verbs — where the past tense is formed via
vowel shift, e.g. "I run" becomes "I ran" — than weak verbs — where
the past tense is formed via suffixing, e.g. "I walk" becomes "I walked".

2626

JUnitJUnit Symmetries and AsymmetriesSymmetries and Asymmetries

•• Recursively consistent execution capability in Recursively consistent execution capability in
the the JUnitJUnit test runner UI for Eclipsetest runner UI for Eclipse

By simple selection, can choose to execute all the By simple selection, can choose to execute all the
tests in a project, a package, a class or a methodtests in a project, a package, a class or a method
Not present on the default runner UIs for Not present on the default runner UIs for JUnitJUnit 3.83.8

•• The family of assertions pair up nicely...The family of assertions pair up nicely...
assertTrueassertTrue and and assertFalseassertFalse, , assertNullassertNull and and
assertNotNullassertNotNull, , assertSameassertSame and and assertNotSameassertNotSame, ..., ...
But sadly, and noticeably, neither But sadly, and noticeably, neither assertEqualsassertEquals nor nor
assertArrayEqualsassertArrayEquals have a partnerhave a partner

Over time JUnit has become more symmetric in terms of its use and
feature set. For example, assertTrue was once not accompanied by
assertFalse (and before that it was named simply assert, which was
set to clash with the J2SE 1.4 keyword). The symmetries highlighted
above as missing are standard in NUnit, which can be considered a
later generation of the same design family. Note that although there is a
strong case for assertEquals and assertArrayEquals to have negating
counterparts, the same is not true for assertThat, whose constraint-
based approach supersedes the need for such balance.
A tendency to align and improve perceived symmetry can be seen as a
desire to reduce friction from minor differences by emphasising
similarity and fit. This is particularly true of both API and UI design.
As an aside, the act of refactoring with respect to functional tests is one
of symmetry preservation: functional behaviour is invariant while the
structure of the code changes.

2727

Consideration 5Consideration 5: Emergence: Emergence

Recognize that you are not assembling a building from components like an erector
set, but that you are instead weaving a structure which starts out globally
complete, but flimsy; then gradually making it stiffer but still rather flimsy; and
only finally making it completely stiff and strong.

Christopher Alexander, A Pattern Language

Recognize that you are not assembling a building from components like an erector
set, but that you are instead weaving a structure which starts out globally
complete, but flimsy; then gradually making it stiffer but still rather flimsy; and
only finally making it completely stiff and strong.

Christopher Alexander, A Pattern Language

2828

The Product of the PartsThe Product of the Parts

•• Complex and sophisticated behaviour can arise Complex and sophisticated behaviour can arise
from simple rulesfrom simple rules

Emergent properties can be counterintuitive and at Emergent properties can be counterintuitive and at
odds with appearancesodds with appearances
Control without controlControl without control

•• Emergent behaviour can be undesirable as well Emergent behaviour can be undesirable as well
as desirableas desirable

Without awareness of emergence, a development Without awareness of emergence, a development
can become mired in patchwork specialcan become mired in patchwork special--case code case code
and a victim rather than a user of queuing theoryand a victim rather than a user of queuing theory

Not all aspects and levels of a system's behaviour have to be defined
painstakingly and explicitly, enumerated in patchworks of special
cases. Behaviour can arise out of combination and collaboration: it does
not itself need to be modular in definition. One of the most common
examples of emergent behaviour is that of flocking, complex behaviour
that relies on three simple rules:

Separation: don't crowd or bump into your neighbours.
Alignment: go in the same direction as your neighbours.
Cohesion: move as close as possible to your neighbours.

However, emergence is not magic and should not appear as an excuse
for muddled or vague notions of behaviour. Most obviously, it can find
itself in tension with the consideration of visibility.
Federation is a common approach to establishing emergent behaviour
that is localised, scalable, coherent and resilient. For example, the DNS
system for domain-name lookup eschews centralised control in favour
of an approach that is locally defined but globally scalable. This
approach can be found in many Broker-based architectures.
Emergent behaviour is also responsible for surprising behaviour,
typically non-linear in nature — which, to humans, is often surprising.
For example, gridlocked traffic, virtual memory page thrashing, effect
on schedule of adding more (untrained) staff to a late project, and so on.

2929

Command(Command(--less) and Control(less) and Control(--free)free)

•• Sometimes the most effective way to achieve a Sometimes the most effective way to achieve a
desired effect is to give up tight controldesired effect is to give up tight control

E.g. selfE.g. self--organising versus microorganising versus micro--managed teamsmanaged teams
E.g. make a problem visible to encourage its solution E.g. make a problem visible to encourage its solution
—— build problems, bug count or age build problems, bug count or age —— as opposed as opposed
to making its solution a commanded responsibilityto making its solution a commanded responsibility
E.g. take decisions through polymorphism not E.g. take decisions through polymorphism not ifif
E.g. a sequence of elements does not need to have E.g. a sequence of elements does not need to have
sortsort applied to make it sorted: start from nothing applied to make it sorted: start from nothing
and add elements so that a sorted order is preservedand add elements so that a sorted order is preserved

There are many cases that demonstrate that sometimes the best way to
achieve an outcome is not to pursue it actively from the point of view of
controlling. This counterintuitive approach can be found in action in the
form of self-organising teams favoured by agile processes. Likewise,
there are counterintuitive ways of tackling certain problems that
involve stepping back and controlling other variables, as opposed to
controlling effects. For example, the number of outstanding defects in a
bug database can easily plateau, reaching steady state. One way to
reduce this is not to tackle the count directly, or reward reduction of
count, but to tackle the age of bugs and both focus on and reward the
reduction of the mean age of defects logged in the database.
It is all too easy to fall into the trap of writing out every apparent
decision that a program takes in terms of explicitly structured control
flow. It is not simply the problem of being overwhelmed by battalions
of special cases, but also the problem of obfuscating even the simplest
decision — leading in turn to a loss of economy.
Polymorphism, whether declared or handcrafted, is one of the most
common approaches to distributing decision behaviour away from the
point of use. This manifests itself most obviously in class hierarchies,
but also through template parameters and function pointers.
Introducing appropriate spacing also polymorphism to play out at
compile and link time, through the judicious use of platform-specific
build paths and dynamically linked libraries.

3030

Driven by FlagDriven by Flag--based Control?based Control?

〈key, data, state: {A, B, C, D} , locked?〉

process
from A to B

process
from B to C

process
from C to D

Consider the problem of handling a large number of records that can be
identified by their key and further characterised in terms of the data
they hold and the state that they are in. They follow a simple state
model where one state is processed into the next. The arrangement of
worker threads shown, each independently drawing from a common
repository, has a decentralised feel to it, following a Blackboard-style
architecture. Because of the threading an additional locked flag is
required to supplement the state flag.

3131

Or Driven by Flow?Or Driven by Flow?

queue for
state B

queue for
state C

completes
in state D

begins in
state A

process
from A to B

process
from B to C

process
from C to D

〈key, data〉

〈key, data〉

Reviewing the problem suggests that a better way to characterise the
problem is as one of transformation rather than one of state. A Pipes
and Filters structure presents a more directly aligned architecture with
this characterisation of the problem domain, one that leads to a
reduction in the state needed to manage the lifecycle of each record.
Instead of treating records as static and operated on by opportunistic
threads, records pass from thread to thread via queues. The queues
now represent the states and the threads the transitions. Decision
structures have disappeared and the state management and lifecycle is
an emergent rather than explicit property. This approach is more
scalable and composable than the previous one.

3232

Design DiscoveryDesign Discovery

•• A RUFA RUF--thenthen--refine rather than a BUF approach refine rather than a BUF approach
helps to converge on a good designhelps to converge on a good design

A vision of what is needed, and a set of possible A vision of what is needed, and a set of possible
outcomes in mind, can make a big difference...outcomes in mind, can make a big difference...
But this is not the same as a single fixed and But this is not the same as a single fixed and
overarching schemeoverarching scheme

•• For example...For example...
Evolving a unitEvolving a unit--testing framework from testing framework from assertassert
The The JUnitJUnit MoneyMoney problem in C++ or Ruby, for which problem in C++ or Ruby, for which
there are lighter solutions than the typical Java onesthere are lighter solutions than the typical Java ones

If software development could be considered a defined domain, fixed-
plan development would not only be possible but would also be more
generally effective. However, its multi-variable nature tends to defeat
any up-front planning that goes beyond establishing a vision of design
and some of the possible paths and techniques that can be used in the
detail. This is not to say that there should be no up-front activity —
exploration and a critical level of understanding are needed before
diving headfirst into the solution space — but that the goal and scope of
up-front activity should be clarified and bound.
A simple example of discovery and response is the ability to rename an
identifier. It appears trivial but is significant in revealing the intended
concepts that underpin a chosen solution. Given the typically
metaphorical nature of names, names matter because of the metaphoric
entailment. This is one simple undertaking that must be possible as a
design is refined through experience.
The Money problem, simply put, is to construct a class that can be used
to represent single or mixed current amounts. The typical Java version
of the Money problem relies on the Composite and the Double Dispatch
patterns plus a host of additional helper methods, and can be extended
to take advantage of the Null Object pattern. An idiomatic C++ version
based on the STL requires only a single value class with no class
hierarchy, and either a map or vector of pair for representation. An
idiomatic Ruby version can rely on the convenience of Hash objects.

3333

OutroductionOutroduction

The only thing to do with good advice is to pass it on. It is never any use to oneself.
Oscar Wilde

The only thing to do with good advice is to pass it on. It is never any use to oneself.
Oscar Wilde

3434

Any Other BusinessAny Other Business

