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Other stuff
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single-threaded, single-core
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how did we get better performance?
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concurrent programming is the norm
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sharing adds latency
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multi-core is a fact of life!
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we need to “deliver twice as much 
concurrency every 18 mounts”
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hardware components are notsharable
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access to shared data must be serialized
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databases offer access to shared data
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serialization limits scalability
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Maths to explain relationship between serialized 
execution and processor utilization

F -> 0 number of utilized CPU -> N
F -> 1 number of utilized CPU -> 1

Amdahl’s Law
16
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serialization limits throughput
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Little’s Law

Maths explaining the relationship between locking 
and throughput

18

λ =1 / μ
μ = 10ms, λ = 100 tps
μ = 100ms, λ = 10 tps

b
a
rrie

r

b
a
rrie

r



Kodewerk
Java  Performance Servicestm

locking is pessimistic
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getting better concurrency in the JVM



Kodewerk
Java  Performance Servicestm

Java and system level locks
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StringBuffer sb = new StringBuffer();

sb.append( “a”);

sb.append(“b”);

sb.append(“c”);

...

Lock Coarsening
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StringBuffer sb = new StringBuffer();

sb.append( “a”);

sb.append(“b”);

sb.append(“c”);

...



Kodewerk
Java  Performance ServicestmLock Elision

{

    StringBuffer sb = new StringBuffer();

    sb.append( “a”);

    sb.append(“b”);

    sb.append(“c”);

}
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CAS Lock
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do these optimizations work?
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Baseline A B C D E F

StringBuffer StringBuilder

A EliminateLocks
B UseBiasedLocking (working)

C UseBiasedLocking (not working)
D EliminateLocks with UseBiasedLocking
E DoEscapeAnalysis
F EliminateLocks with UseBiasedLocking and DoEscapeAnalysis
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techniques we can use
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Atomics to reduce lock contention
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private int counter = 0;

Runnable mutator = new Runnable() {
    public void run() {
        long localCount = 0;
        while ( running) {
            counter++;
            counter--;
            localCount++;
        }
        addToTotalCount( localCount);
    }
};
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Baseline

Volatile

Synchronized

Lock

Atomic
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Lock striping
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{
{

lock 

lock 

lock 

Thread
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HashMap (no sync)

HashMap (sync)

HashTable

ConcurrentHashMap
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teaching threads to steal
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Fork-Join
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Lock free concurrency
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Parallel reads, serialized writes
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Reader/Writer lock with only readers 
will not scale beyond 100 cpus
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large arrays for concurrent 
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arrays to hold all data
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resize cannot block
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fully concurrent lock-less hashmap
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Things we need

Large array to hold all data
alternating array of key value pairs

state machine for pair of words
CAS to manage state transistion

Tombstone to mark deleted words
Use a box to mark values during resize

allows read access but prevents update
No single point of contention

52
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0/0

Initial

Inserting K/V pair
Already probed table, missed
Found proper empty K/V slot
Ready to claim slot for this Key
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0/0

K/0
insert
key

claim slot
CAS in a key

naked key
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0/0

K/0

K/V

insert
V

initial set of value

active

insert
key
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delete

Tombstone marks delete, key remains

0/0

K/0

K/T

K/V

deleted

insert
V

insert
key
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re-insert
delete

deleted

0/0

K/0

K/T

K/V

insert
V

insert
key

operations use same key slot
all operations operate normally

over-write V
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re-insert
delete

resize triggered 
new array created

helper threads CAS a promise counter

insert
V

insert
key

over-write V

0/0

K/0

K/T

K/V

0/0
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re-insert
delete

boxing prevents further changes

insert
V

insert
key

over-write V

K/[V]
0/0

K/0

K/T

K/V

0/0

box

boxed V
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re-insert
delete

claim key slot in new table

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0

bare key

insert
key
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re-insert
delete

copy V without box

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0insert
key K/V

copy

active
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re-insert
delete

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0insert
key K/V

copy

active

memory fence between arrays

fence after writing new
array and before copy done
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re-insert
delete

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0insert
key K/V

copy

copy done
memory fence between arrays

fence after writing new
array and before copy done

K/[T]

copy
done



Kodewerk
Java  Performance Servicestm

re-insert
delete

insert
V

insert
key

over-write V

box

memory fence between arrays

copy
done

copy stops partial insert

K/[V]
0/0

K/0

K/T

K/V

K/[T]

0/0

nothing to copy
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re-insert
delete

insert
V

insert
key

over-write V

box

memory fence between arrays

copy
done

copy stops partial insert

K/[V]
0/0

K/0

K/T

K/V

K/[T]

0/0 K/0 K/V
insert
key

copy
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HashMap (no sync)

HashMap (sync)

Hashtable

ConcurrentHashMap

NonBlockingHashMap
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HashMap (no sync)

HashMap (sync)

Hashtable

ConcurrentHashMap

NonBlockingHashMap
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scales linerarly up too 1000 CPUs



Kodewerk
Java  Performance Servicestm

Fully concurrent lock-less FIFO?
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Stripe on queues and randomly pick one
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stripe ad-absurdum
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insert searchs for null CAS down value
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read searchs for value and CAS down null
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too large read spin, too small inserts spin
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resize is earier, promote when entire 
array is tombstoned
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Questions?


