
Concurrency and High
Performance Reloaded

Kodewerk
Java Performance Servicestm

www.kodewerk.com

Kodewerk
Java Performance Servicestm

Me

Work as independent (a.k.a. freelancer)
performance tuning services
benchmarking
Java performance tuning course

www.javaperformancetuning.com
www.theserverside.com
Nominated Sun Java Champion
Other stuff

2

Kodewerk
Java Performance Servicestm

single-threaded, single-core

Kodewerk
Java Performance Servicestm

how did we get better performance?

Kodewerk
Java Performance Servicestm

concurrent programming is the norm

Kodewerk
Java Performance Servicestm

sharing adds latency

www.kodewerk.com8

www.kodewerk.com

Kodewerk
Java Performance Servicestm

9

Kodewerk
Java Performance Servicestm

multi-core is a fact of life!

Kodewerk
Java Performance Servicestm

we need to “deliver twice as much
concurrency every 18 mounts”

Kodewerk
Java Performance Servicestm

hardware components are notsharable

Kodewerk
Java Performance Servicestm

access to shared data must be serialized

Kodewerk
Java Performance Servicestm

databases offer access to shared data

Kodewerk
Java Performance Servicestm

serialization limits scalability

www.kodewerk.com

Kodewerk
Java Performance Servicestm

Maths to explain relationship between serialized
execution and processor utilization

F -> 0 number of utilized CPU -> N
F -> 1 number of utilized CPU -> 1

Amdahl’s Law
16

1

F + (1 - F)

N

Kodewerk
Java Performance Servicestm

serialization limits throughput

www.kodewerk.com

Kodewerk
Java Performance Servicestm

Little’s Law

Maths explaining the relationship between locking
and throughput

18

λ =1 / μ
μ = 10ms, λ = 100 tps
μ = 100ms, λ = 10 tps

b
a
rrie

r

b
a
rrie

r

Kodewerk
Java Performance Servicestm

locking is pessimistic

Kodewerk
Java Performance Servicestm

getting better concurrency in the JVM

Kodewerk
Java Performance Servicestm

Java and system level locks

Kodewerk
Java Performance Servicestm

StringBuffer sb = new StringBuffer();

sb.append(“a”);

sb.append(“b”);

sb.append(“c”);

...

Lock Coarsening

Kodewerk
Java Performance ServicestmLock Coarsening

StringBuffer sb = new StringBuffer();

sb.append(“a”);

sb.append(“b”);

sb.append(“c”);

...

Kodewerk
Java Performance ServicestmLock Elision

{

 StringBuffer sb = new StringBuffer();

 sb.append(“a”);

 sb.append(“b”);

 sb.append(“c”);

}

Kodewerk
Java Performance ServicestmBiased Locking

CAS Lock

Kodewerk
Java Performance Servicestm

do these optimizations work?

Kodewerk
Java Performance Servicestm

0

1750

3500

5250

7000

Baseline A B C D E F

StringBuffer StringBuilder

A EliminateLocks
B UseBiasedLocking (working)

C UseBiasedLocking (not working)
D EliminateLocks with UseBiasedLocking
E DoEscapeAnalysis
F EliminateLocks with UseBiasedLocking and DoEscapeAnalysis

Kodewerk
Java Performance Servicestm

techniques we can use

Kodewerk
Java Performance Servicestm

Atomics to reduce lock contention

Kodewerk
Java Performance Servicestm

private int counter = 0;

Runnable mutator = new Runnable() {
 public void run() {
 long localCount = 0;
 while (running) {
 counter++;
 counter--;
 localCount++;
 }
 addToTotalCount(localCount);
 }
};

Kodewerk
Java Performance Servicestm

Baseline

Volatile

Synchronized

Lock

Atomic

Kodewerk
Java Performance Servicestm

Lock striping

Kodewerk
Java Performance ServicestmConcurrentHashMap

{
{
{

lock

lock

lock

Thread

Kodewerk
Java Performance ServicestmBlackboard

HashMap (no sync)

HashMap (sync)

HashTable

ConcurrentHashMap

Kodewerk
Java Performance Servicestm

teaching threads to steal

Kodewerk
Java Performance Servicestm

Fork-Join

Kodewerk
Java Performance ServicestmWork Stealing Queue

Kodewerk
Java Performance ServicestmWork splitting

U
n
its

 o
f w

o
rk

Kodewerk
Java Performance Servicestm

Kodewerk
Java Performance Servicestm

Kodewerk
Java Performance Servicestm

Kodewerk
Java Performance Servicestm

Kodewerk
Java Performance Servicestm

Kodewerk
Java Performance ServicestmDegrees of Scalability

Kodewerk
Java Performance Servicestm

Lock free concurrency

Kodewerk
Java Performance Servicestm

Parallel reads, serialized writes

Kodewerk
Java Performance Servicestm

Reader/Writer lock with only readers
will not scale beyond 100 cpus

Kodewerk
Java Performance Servicestm

large arrays for concurrent

Kodewerk
Java Performance Servicestm

arrays to hold all data

Kodewerk
Java Performance Servicestm

resize cannot block

Kodewerk
Java Performance Servicestm

fully concurrent lock-less hashmap

www.kodewerk.com

Kodewerk
Java Performance Servicestm

Things we need

Large array to hold all data
alternating array of key value pairs

state machine for pair of words
CAS to manage state transistion

Tombstone to mark deleted words
Use a box to mark values during resize

allows read access but prevents update
No single point of contention

52

Kodewerk
Java Performance Servicestm

0/0

Initial

Inserting K/V pair
Already probed table, missed
Found proper empty K/V slot
Ready to claim slot for this Key

Kodewerk
Java Performance Servicestm

0/0

K/0
insert
key

claim slot
CAS in a key

naked key

Kodewerk
Java Performance Servicestm

0/0

K/0

K/V

insert
V

initial set of value

active

insert
key

Kodewerk
Java Performance Servicestm

delete

Tombstone marks delete, key remains

0/0

K/0

K/T

K/V

deleted

insert
V

insert
key

Kodewerk
Java Performance Servicestm

re-insert
delete

deleted

0/0

K/0

K/T

K/V

insert
V

insert
key

operations use same key slot
all operations operate normally

over-write V

Kodewerk
Java Performance Servicestm

re-insert
delete

resize triggered
new array created

helper threads CAS a promise counter

insert
V

insert
key

over-write V

0/0

K/0

K/T

K/V

0/0

Kodewerk
Java Performance Servicestm

re-insert
delete

boxing prevents further changes

insert
V

insert
key

over-write V

K/[V]
0/0

K/0

K/T

K/V

0/0

box

boxed V

Kodewerk
Java Performance Servicestm

re-insert
delete

claim key slot in new table

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0

bare key

insert
key

Kodewerk
Java Performance Servicestm

re-insert
delete

copy V without box

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0insert
key K/V

copy

active

Kodewerk
Java Performance Servicestm

re-insert
delete

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0insert
key K/V

copy

active

memory fence between arrays

fence after writing new
array and before copy done

Kodewerk
Java Performance Servicestm

re-insert
delete

insert
V

insert
key

over-write V

box

K/[V]
0/0

K/0

K/T

K/V

0/0 K/0insert
key K/V

copy

copy done
memory fence between arrays

fence after writing new
array and before copy done

K/[T]

copy
done

Kodewerk
Java Performance Servicestm

re-insert
delete

insert
V

insert
key

over-write V

box

memory fence between arrays

copy
done

copy stops partial insert

K/[V]
0/0

K/0

K/T

K/V

K/[T]

0/0

nothing to copy

Kodewerk
Java Performance Servicestm

re-insert
delete

insert
V

insert
key

over-write V

box

memory fence between arrays

copy
done

copy stops partial insert

K/[V]
0/0

K/0

K/T

K/V

K/[T]

0/0 K/0 K/V
insert
key

copy

Kodewerk
Java Performance ServicestmBlackboard Reloaded

HashMap (no sync)

HashMap (sync)

Hashtable

ConcurrentHashMap

NonBlockingHashMap

Kodewerk
Java Performance ServicestmBlackboard Reloaded

HashMap (no sync)

HashMap (sync)

Hashtable

ConcurrentHashMap

NonBlockingHashMap

Kodewerk
Java Performance Servicestm

Kodewerk
Java Performance Servicestm

scales linerarly up too 1000 CPUs

Kodewerk
Java Performance Servicestm

Fully concurrent lock-less FIFO?

Kodewerk
Java Performance Servicestm

Stripe on queues and randomly pick one

Kodewerk
Java Performance Servicestm

stripe ad-absurdum

Kodewerk
Java Performance Servicestm

insert searchs for null CAS down value

Kodewerk
Java Performance Servicestm

read searchs for value and CAS down null

Kodewerk
Java Performance Servicestm

too large read spin, too small inserts spin

Kodewerk
Java Performance Servicestm

resize is earier, promote when entire
array is tombstoned

Kodewerk
Java Performance Servicestm

Questions?

