

Ola Bini
JRuby Core Developer
ThoughtWorks Studios

ola.bini@gmail.com
http://olabini.com/blog

What, why, how

Domain Specific Languages

ThoughtWorks
Global consulting firm

US, Canada, UK, Australia, India, China - and Sweden

1100 people worldwide

Agile

Open Source

Ruby

Martin Fowler

About me
Ola Bini

From Sweden

JRuby

Ioke

Xample

Member of the JSR232 expert group

Agenda
To understand what a DSL is and isn’t

When a DSL might be useful

How to go about implementing an internal DSL in Java

How to go about implementing an external DSL with Java

Why are DSLs so common in Ruby?

What is a DSL?

“a computer programming language of limited
expressiveness focused on a particular domain” -
Martin Fowler

The benefits of a DSL
Increase development productivity

clear code is easier to evolve

easy to achieve but relatively small impact

Communication with domain experts

common language to define system behavior

reading is more vital than writing

hard to achieve but big impact

Shift in execution context

compile time to run-time

different platform (eg, generating SQL)

Declarative computational model

DSL problems
Cost of building

Language cacophony

Hard to design

Migration

Evolving into generality

DSLs are all around you

graphviz

ant

rake
LINQ

Hibernate Query Language

regular expressions

SQL FIT

make

JMock expectations

struts-config.xml

rails validationsCSS

DSLs aren’t new
Lisp “Little languages”

Unix utilities - sed, grep, etc

Make tools

Different kinds of DSLs
External

Separate to Host language

Needs a compiler/interpreter

Can be graphical

Internal

Written in host language

Conventional use of subset of
host language syntax

Sometimes called embedded
DSL or fluent interface

Internal DSLs

Context
DSLs have an implicit context

Contrast this Car API:

Car car = new CarImpl();
MarketingDescription desc = new
MarketingDescription();
desc.setType(“Box”);
desc.setSubType(“Insulated”);
desc.setAttribute(“length”, “50.5”);
desc.setAttribute(“ladder”, “yes”);
desc.setAttribute(“lining type”, “cork”);
car.setDescription(desc);

Method chaining
Instead of returning void, return the receiver

StringBuilder.append

This allows chaining of multiple invocations:

Log.withRoot(“foo”)
 .usingAppender(“bar”)
 .formattedWith(“xlayout”)
 .usingAppender(“quux”)
 .formattedWith(“ylayout”);

Fluent interfaces: wrapping APIs
Fluent interfaces improve the readability of any code

You can wrap existing APIs in fluent interfaces

Invocation semantics

Chained methods

e().i().e().i().o();

Nested methods

e(i(e(i(o()))));

Object scoping
Put the code that uses a DSL in the subclass

JMock matchers:

context.checking(new Expectations() {{
 one(clock).time();
 will(returnValue(loadTime));
 one(clock).time();
 will(returnValue(fetchTime));

 one(loader).load(KEY);
 will(returnValue(true));
}});

External DSLs

Pros and cons
Sometimes hard to get desired semantics with an internal DSL

External DSLs allow changing the computational model easier

Flexibility in language design

Perceived as more difficult than they actually are

Do complicate builds, as it is a different technology

Delimiter directed translation
Chop input primary delimiter (usually line endings)

Send each line for separate processing

Parser need to keep state for hierarchic context (so try to
avoid those)

Look for keywords manually in each line

Or use regular expressions to match input

Syntax directed translation
Use a grammar file to specify syntactic structure

Grammar is a DSL to drive a parser

Pure parser only says if a text is part of a language or not

Not exactly useful in itself

So extract parse tree that gets built during the above process

Grammar file
DSL:

events
 doorClosed D1CL
 drawOpened D2OP
end

commands
 unlockPanel PNUL
 lockPanel PNLK

end

Grammar:

list : eventList commandList;
eventList : ‘events’ eventDec* ‘end’;
eventDec : identifier identifier;
commandList : ‘commands’ commandDec*
 ‘end’;
commandDec : identifier identifier;

Building a syntax translator
Write by hand

Usually recursive descent

Easy to do from an LL(1) grammar

Use parser generator

yacc (bison, etc)

ANTLR

... many others

Parts of a syntax translator
Lexer (scanner, tokenizer)

Breaks text into tokens

Parser (syntactic analyzer)

Arranges token into parse tree

Semantic analysis

Checks rules beyond what parser can do

Output production

Do something useful

Embedded interpretation
Does something directly when the parse element is
encountered

Easy to get started

Doesn’t scale well

Generally require action code to be embedded in grammar

Tree construction
Parser returns a parse or abstract syntax tree

This can be used in any way

ANTLR allow the output tree to be rewritten into a more
convenient format

Features of parser generators
Platform

Style of grammar

BNF or EBNF

Grammar class: LL(1), LL(*), LALR(1), SALR ...

How code is embedded

Separate lexer?

Tools

Documentation

Workbenches
Sophisticated tooling for integrated external DSLs:

Microsoft Software Factories

Intentional Software (Charles Simonyi)

JetBrains Meta-Programming System (MPS)

MetaEdit

XText

Microsoft Oslo

Schema definitions

Editor definition

Code generation

Blurry borders
External DSL vs general purpose language

Is XSLT a DSL?

Is R a DSL?

Internal DSL vs API

Language Workbench vs Configurable Application

Is Access a language workbench?

Human jargon vs Computer language

Why the Ruby+DSL marriage?
Ruby allow easy runtime code evaluation

It has a very flexible syntax

Avoid parenthesis, semicolons

Send code along to methods - deferred evaluation

Good taste in APIs.

ActiveRecord:

class Blog < ActiveRecord::Base
 belongs_to :user
 has_many :posts
 validates_presence_of :name
end

AQ and

