
© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved.

Discover the Power and
Elegance of “Java
Contexts and
Dependency Injection”
(Web Beans)

Magnus Kastberg
Java Application Architect

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 2

Biography – Magnus Kastberg

• Java Architect at NASDAQ OMX in Stockholm

•Over 12 years experience building Java / Java EE based

systems

•Prior NASDAQ OMX I worked 7 years for Sun Microsystems as a

Java developer and architect, and 2 years for CIBER

•Currently spend my days building financial, business-critical

Java EE based systems

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 3

Background

• Java EE 5 and EJB 3.0 made it a lot simpler to develop Java EE apps,

but still some problems…

• There is a split between web tier and business tier technologies…

- Unnecessary complicated to access EJB components (JNDI lookup…)

- Complicated to share state between components (EJB components are not
aware of web-tier contexts)

• A general dependency injection mechanism needed

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 4

What is ”Java Contexts and Dependency Injection”?

• JSR 299 (spec lead Gavin King)

•Advanced typesafe dependency injection (DI) service

• Injection of different Java EE components and resources

•Allow different Java EE components to be bound to a context

•Container handles injection and lifecycle management of
components

• Integration with Unified Expression Language making is possible
to use a component within a JSF or JSP page

•Events

•SPI that allows non-platform technologies to integrate with the
container, for example alternative web presentation technologies

• Influenced mostly by JBoss Seam and Google Guice

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 5

Supported environments

• Java EE 6 containers

•Embeddable EJB Lite containers Use in Java SE

• Java EE 5 containers optional

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 6

Bean implementations

Bean implementations

• Simple beans (plain Java classes)

• EJB session/singleton beans

• Resources

- Java EE resources (JDBC datasource)

- Entity managers

- Remote EJBs

- Webservice references

• JMS resources (queues and topics)

You can implement support for other kinds of Beans!

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 7

Bean definition

Different attributes can be declared on a bean which serves as
input to the dependency injection mechanism and context
management.

Bean attributes:

•Bean types

•Binding types

•Deployment type

•Scope

•Bean Name

•Bean Implementation

The attributes may either be:
-declared by using Java annotations
-declared in beans.xml
-defaulted by the container

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 8

Binding types

•A binding type lets a client choose between multiple
implementations of an API

•The client don’t want to specify the implementation class!

•The default binding type is @Current

•You specify own binding types by using @BindingType annotation

@BasicLogin

public class BasicLoginManager implements LoginManager {

public void login(String username, String password) { ... }

}

@SecureLogin

public class SecureLoginManager implements LoginManager {

public void login(String username, String password) { ... }

}

@BasicLogin LoginHandler login; @SecureLogin LoginHandler login;

Injection of BasicLoginManager Bean Injection of SecureLoginManager Bean

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 9

Deployment type

•Represents different deployment scenarios (test, production, etc)

•Makes it really easy to switch implementations of different bean
types at deployment-time

•The built-in deployment types are @Production and @Standard

•You specify own deployment types by using @DeploymentType

@Mock

public class BasicLoginManager implements LoginManager { … }

@Production

public class SecureLoginManager implements LoginManager { … }

@Current LoginManager login;

login.login(…);

Injection of BasicLoginManager Bean

<Deploy>
<Standard/>
<Production/>
<Mock/>

</Deploy>

beans.xml

Highest
precedence

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 10

Bean scope

•All beans have a scope which is associated with a context

•A context handles the lifecycle of all bean instances with a

specific scope

•The built-in scopes are:

- @RequestScoped, @SessionScoped, @ApplicationScoped

- @ConversationScoped

- @Dependent (default)

•All scopes except @Dependent are ”normal” scopes

•An injected Bean instance with @Dependent scope is bound to

the client, it is never shared between multiple injection points

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 11

Bean Name

• A bean can be given a name with the @Named annotation

• A bean may be referred to by its name only in Unified EL expressions

• Allows a bean, including EJB session beans, to be used directly in a JSP
or JSF page!

Example bean:

@Named(“password")

@SessionScoped

@Stateful

public class PasswordManager {

public void setOld(String old) { … }

public void setNew(String new) { … }

public void update() { em.merge(…); }

}

Example JSF page:

<h:inputText value="#{password.old}"/>

<h:inputText value="#{password.new}"/>

<h:commandButton value=“Change pwd” action=“#{password.update}”/>

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 12

Typesafe Dependency injection

•When matching a bean to an injection point, the container

considers:

- Bean type

- Binding types

- Deployment type precedence

•When matching a bean in Unified EL expressions, the container

considers:

- Bean Name

- Deployment type precedence

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 13

Bean integration

•A bean can interoperate with another

bean (using DI)

•Any type of EJB can interoperate with

a bean (using DI)

•A Servlet can interoperate with a bean

(using DI)

• JSP and JSF pages can interoperate

with beans (using Unified EL

expressions)

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 14

Events

•Beans may interact via events in a completely decoupled way (no

compile-time dependency between the producer and consumer

beans)

•An event consumer observes events of a specific event type and

a specific set of event binding types

•An observer method is defined via the @Observes annotation

•Event observers may receive events asynchronously using

@Asynchronously

•Event types may be mapped to JMS topics for distributed events

sent between different processes

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 15

Events (continued…)

Example (event producer firing an event)

public void pay() {

Payment payment = …;

manager.fireEvent(new PaymentDoneEvent(payment), new CreditCardBinding() {});

}

Example (event consumer observing the event)

public void afterCreditCardPayment(@Observes @CreditCard PaymentDoneEvent event) {

Payment payment = event.getPayment();

…

}

Implementation of CreditCard event binding type

Observed event binding type Observed event type

Event object

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 16

More Info

• JSR 299

- http://jcp.org/en/jsr/detail?id=299

•Gavin King’s Blog:

- http://in.relation.to/Bloggers/GavinsBlog/Tag/Web+Beans

http://jcp.org/en/jsr/detail?id=299
http://in.relation.to/Bloggers/GavinsBlog/Tag/Web+Beans

© Copyright 2008, The NASDAQ OMX Group, Inc. All rights reserved. 17

Questions?

I will be here today…or

Email: magnus.kastberg@gmail.com

mailto:magnus.kastberg@gmail.com

