SArdh A A LT T T T F LT
LA T =

> ThoughtWorks

A Field Guide to your very own
Guerrilla SOA Campaign

Dr. Jim Webber
Professional Services Director, ThoughtWorks

o= ThoughtWorks
Fundamental Premise

There are two things money cannot buy:

1. Love
(Lennon/McCartney)

2. An SOA
(Webber)

ThoughtWorks:

Roadmap

» Enterprise Application Integration
Approaches

« Enterprise Architecture, now and future
» The Appealing Rationale for ESB...

« Enterprise Architecture

» SOA and the Web

» What this means for you

» Conclusions

- Q&A

ThoughtWorks:

Integration Approaches

Data integration

- Extract, transform, route, inject data
Application level

- Re-use application APIs, or I/0 mechanisms

EAl implementation

- Queues etc

Business domain tier

- Integration at the object level, as typified by CORBA, DCOM etc
User interface

- Screen scraping, revamping, etc.

- Last resort, when an application offers no other hooks
Web Services

- Qur first foray into protocol-centric integration!

— — g ThoughtWorks'

To ESB or not to ESB, that is the question

» Product vendors are keen to provide
product solution for everything

- Or to supply “consultantware” solutions

« The Enterprise Service Bus is the latest
incarnation of EAl technology that
supports a number of useful functions:

- Transformations; adapters; choreography;
reliability; security etc

» Seems like a good idea...

s ThoughtWorks:

Today’s Enter rise\ Architecture

>

R ThoughtWorks

How did we get here?

» Tactical decisions
» Time and technology pressures

» Path of least resistance for individual
applications

» This is the thin end of the wedge,
technical debt can only increase from
here

» Help!

ThoughtWorks:

Vendor Solutions Appear

Business needs to
compete
- IT needs to be responsive

SOA gives IT a business
process focus

Pick a technology, and...

More proprietary
middleware is the
answer!

- 2+2=5

Business Need = Agility
Architectural
Approach = SOA
Enabling = Web
Technology Services
Product = ESB

http://www.capeclear.com/technology/index.shtml

ThoughtWorks
Integration Two Years Later

/—Accou nting

~ /—Marketing

~

JOg
I

Y

g

o

—> J L

a0

—> [l

/—Pro uct Development

ThoughtWorks
Skeletons in the Closet...

T T |

| | Enterprise Service Bus ‘ ‘

The Appealing Rationale for ESB...

» Perceived single framework for all
integration needs

» Perceived simple connectivity between
systems

» Some features for security, reliable
delivery, etc.

» All you have to do is agree to lock
yourself into a ESB and all this can be
yours...

ThoughtWorks:

...And the Reality

« The mess is swept under the carpet hidden inside
a vendor box

- Mixing business rules, transformations, QoS etc with
connectors

» Vendor lock-in of the whole network!

- ESBs are proprietary, so no guarantees that the
messages transmitted across the bus are actually
based on any open protocol

» Held to ransom by the ESB vendor!

- Can only easily integrate systems for which the ESB
vendor provides specific adaptors

- Or invest your money into extending their product

Intelligent Networks, Dumb Idea?

o Isn't this precisely what we're trying to
get away from?

 Integration should happen on the wire by
default, not inside some server

» The ESB approach eschews the dumb
network

- Smart endpoints underpin scalable, robust
systems

- Smart networks are failure points

Thought\Works:

More plumbing gets built

ThoughtWorks:

grow powerful

b

SOA “experts

ThoughtWorks:

And ESB software grows...

Mcrazyshit.com

ThoughtWorks

GUI Tools

L e ad

R ThoughtWorks:
Integration five years from now

~-Accounting——— —

= = =
[—] [—] [—]
(=] (=] —
(—1 (—1 (—]
=c= = =

(
—
—
N\

4

LLLLL
IIIIJLI
» IIIIJLI

) /-Research—\

I

/—Pr uct Devel ent

N\
— — —
'l:l — —
— — —
= (o= = (o= ==
== == =c =

—~

i 7 A S T 5 S T S B e e A Sy e =
i 0 i B v i
e

e ThoughtWorks
Integratmn ten years from now

—M ket
= =
— —
— —
— —
) ~Researc h——
H
==
—
—
—
~—Support ==
\ Y,

I

ThoughtWorks:

Architectural Fantasy

wl‘c

I_ijD e Em NG

THE RETURN OF THE KING

WWW.LORDOFTHERINGS NET

ThoughtWorks:

How did this happen?

» Same old story:
- Tactical decisions
- Time and technology pressures

- Path of least resistance for individual applications
» Centralised ownership of the ESB sometimes is an
inhibitor
- Too much effort to get on the bus, technically,
politically

- Individuals always mean to redress hacked
integrations

- But seldom do - it’s too hard when systems are live

ThoughtWorks:

BDUF Trench Warfare

“If nothing else works,
a total pig-headed
unwillingness

to looR facts in the face

will see us through.”

PECK ' NIVEN ' QUINN

_ THE GUNS OF NAVARONE

smp the Nazi
from dev.elo

GRfﬁORY‘DAVleANTHONY

Ry —

KIRK RICHIIRD

 ANTHONY MAKN'S

THE HERDES
OF TELEMARK

PANAVISION™ COLUMBIACOLOA
(LA MCUBSSE WCHAEL REDGRME

ey TN P NTHONY WA

WINN[H IlH

IEIIIKMY AWARDS
BEST P it

«

Thought\Works:

Rlchard TODD Mlchael REDGRAVE

URSULA JEANS - BASIL SYONEY - PATRICK BARR. ERNEST CLARK s DEREK FARR

= ThoughtWorks’

Spaghetti is a fact of life

» Businesses change
» Processes change
« Applications change
 Integration changes

» Need an enterprise computing strategy that:
- Reflects the changing structure of the business;
- Is spaghetti-friendly;
- Commoditised;
- Robust, secure, dependable, etc.

ThoughtWorks:

Business-Led Integration

« ESBs integrate with whatever existing systems expose
- Green screen, web pages, CORBA objects, XML, etc
» Integration happens at a low level

- Mapping of bits and bytes of one variety onto bits and bytes of
another format

« This makes it hard to engage business in such projects
- Without business benefit no software has value
» Integration is currently opaque to the business

« Business must be involved in integration projects - not just
initiate them

- The integration domain must use the same vocabulary as the
business domain

ThoughtWorks:

Spaghetti-Oriented Architecture

» Fighting against spaghetti is usually unsuccessful

- This does not mean integration should be undertaken
without diligence!

« SOA is an approach which is spaghetti-agnostic

» Services are designed for integration with any
consumer

- Integration is decentralised

« In Web-based SOA, we model key business entities as
Web resources

» Result:

- Loosely coupled, re-usable services
- Focus on business-meaningful atrifacts

Web Characteristics

» Scalable

» Fault-tolerant

» Recoverable

» Secure

» Loosely coupled

» Precisely the same characteristics we
want in SOA!

ThoughtWorks:

Tenets for Web-based Services

Resource-based

- Rather than service-oriented (the Web is not MOM!)
Addressability

- Interesting things should have names
Statelessness

- No stateful conversations with a resource
Representations

- Resources can be serialised into representations
Links

- Resources

Uniform Interface

- No plumbing surprises!

ThoughtWorks:

Workflow

« How does a typical enterprise workflow look
when it’s implemented in a Web-friendly
way?

» Let’s take Starbuck’s as an example, the
happy path is:

- Make selection
» Add any specialities
- Pay
- Wait for a while
- Collect drink

ThoughtWorks:

Workflow and MOM

 With Web Services we
exchange messages
with the service

 Resource state 1S
hidden from view

 Conversation state is
all we know

- Advertise it with
SSDL, BPEL, WS-Chor

 Uniform interface, Pay
roles defined by SOAP

- No “operations” Coffee!

Order Drink

Add Specialities

Order Confirmation

)
=
>
C
v
0p]
L
Y4
O
>
0
=
40)
)
0p]

Web-friendly Workflow

« What happens if workflow stages are
modelled as resources?

» And state transitions are modelled as
hyperlinks or URI templates?

» And events modelled by traversing links
and changing resource states?

» Answer: we get Web-friendly workflow

- With all the quality of service provided by
the Web

Placing an Order

» Place your order by POSng it to a well-
known URI

- http://example.starbucks.com/order

ThoughtWorks:

Placing an Order: On the Wire

» Request

POST /order HTTP 1.1

Host: starbucks.example.org
Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>

</order>
If we have a (private)
microformat, this can

become a neat API!

» Response
201 Created

Location:
http://starbucks.example.org/
order?1234

Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>

<link rel="payment"
ps://starbucks.examp

le.org/payment/order?1234"
type="application/xml" />

</order>

ThoughtWorks:

Whoops! A mistake

» | like my coffee to taste like coffee!

| need another shot of espresso
- What are my OPTIONS?

Request Response

OPTIONS /order?1234 HTTP 1.1 200 OK
Host: starbucks.example.org Allow: GET, PUT Phew! | can
update my order,
for now

= ThoughtWorks:

Optional: Look Before You Leap

» See if the resource has changed since you
submitted your order

- If you’re fast your drink hasn’t been
prepared yet

Request Response
PUT /order?1234 HTTP 1.1 100 Continue
Host: starbucks.example.org | can still PUT this

resource, for now.
(417 Expectation Failed
otherwise)

Expect: 100-Continue

-)

Amending an Order

» Add specialities to you order via PUT
- Starbucks needs 2 shots! ©

ThoughtWorks:

Amending an Order: On the Wire

» Request

PUT /order?1234 HTTP 1.1
Host: starbucks.example.org
Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

<link rel="payment"
href="https://starbucks.exampl
e.org/payment/order?1234"

type="application/xml" />
</order>

» Response
200 OK

Location:
http://starbucks.example.org/o
rder?1234

Content-Type: application/xml
Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

<link rel="payment"
href="https://starbucks.exampl
e.org/payment/order?1234"

type="application/xml" />
</order>

Statelessness

« Remember interactions with resources are stateless

« The resource “forgets” about you while you’re not
directly interacting with it

« Which means race conditions are possible

 Use If-Unmodified-Since on a timestamp to
make sure
- Oruse If-Match and an ETag

 You’llget a 412 PreconditionFailed if you lost
the race

- But you’ll avoid potentially putting the resource into
some inconsistent state

— ThoughtWorks*

Warning: Don’t be Slow!

» Can only make changes until someone
actually makes your drink

- You’re safe if you use If-Unmodified-Since
or If-Match

- But resource state can change without you!

Request Response

PUT /order?1234 HTTP 1.1

Host: starbucks.example.org R ™
e Too slow! Someone else has
changed the state of my order
Request Response

OPTIONS /order?1234 HTTP 1.1 Allow: GET

Host: starbucks.example.org

Order Confirmation
» Check your order status by GETing it

ThoughtWorks:

Order Confirmation: On the Wire

» Request » Response

GET /order?1234 HTTP 1.1 200 OK

Host: starbucks.example.org Location:

Content-Type: application/xml http://starbucks.example.org/orde
r?1234

Content-Length:
Content-Type: application/xml

Content-Length:

<order xmlns="urn:starbucks">
<drink>latte</drink>
<additions>shot</additions>

Are they trying to tell me <link rel="payment"
something with hypermedia? href="https://starbucks.example.o

rg/payment/order?1234"
type="application/xml" />
</order>

i i e
725 A 30 G 5 [

ThoughtWorks:

Order Payment

» PUT your payment to the order resource

https://starbucks.example.org/payment/order?1234

New resource!
https://starbucks.example.org/payment/order?1234

i i e =

ThoughtWorks:

How did | know to PUT?

« The client knew the URI to PUT to from the link

- PUT is also idempotent (can safely re-try) in case of failure
« Verified with OPTIONS

- Just in case you were in any doubt ©

Request Response

OPTIONS /payment/order?1234 HTTP 1.1 Allow: GET, PUT

Host: starbucks.example.org

, T ST D T T B e e ™ 5y i
e 8 (50 15 1 B o o i
AATFFTTE

ThoughtWorks:

Order Payment: On the Wire

» Request

PUT /payment/order?1234 HTTP 1.1
Host:
Content-Type: application/xml
Content-Length:

starbucks.example.org

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>

» Response

201 Created

Location:
https://starbucks.example.or

g/payment/order?1234
Content-Type: application/xml

Content-Length:

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>

ThoughtWorks:

, S T S S T B e e o S Sl e =
i v 3 0 50 59 12 oy i s i

Check that you’ve paid

» Request » Response

GET /order?1234 HTTP 1.1 200 OK

Host: starbucks.example.org Content-Type: application/xml
Content-Type: application/xml Content-Length:

Content-Length:

<order xmlns="urn:starbucks">

My “API” has changed,
because I’ve paid enough rink>latte</drink>

now <additions>shot</additions>

</order>

i ThoughtWorks'

What Happened Behind the Scenes?

» Starbucks can use the same resources!

» Plus some private resources of their own
- Master list of coffees to be prepared

« Authenticate to provide security on some
resources

- E.g. only Starbuck’s are allowed to view
payments

ThoughtWorks:

Payment

« Only Starbucks systems can access the record of payments
- Using the URI template: http://.../payment/order?{order id}

« We can use HTTP authorisation to enforce this

Request Response

401 Unauthorized
WWW-Authenticate: Digest
realm="starbucks.example.org",
gop="auth", nonce="abo656...",
opaque="bo6a9..."

GET /payment/order?1234 HTTP 1.1
Host: starbucks.example.org

Request Response

GET /payment/order?1234 HTTP 1.1 200 OK
Host: starbucks.example.org
Authorization: Digest username="jw"
realm="starbucks.example.org"

Content-Type: application/xml
Content-Length: .

Ei?ifpa§ﬁént/order?1234n <payment xmlns="urn:starbucks">
gop=auth <cardNo>123456789</cardNo>
nc=00000001 <expires>07/07</expires>
cnonce="..." <name>John Citizen</name>
reponse="..." <amount>4.00</amount>
opaque="..." </payment>

ThoughtWorks:

Master Coffee List

- /orders URI for all orders, only accepts GET
- Anyone can use it, but it is only useful for Starbuck’s

- It’s not identified in any of our public APIs anywhere, but the back-
end systems know the URI

Request Response

200 OK
Content-Type: application/xml

GET /orders HTTP 1.1 Content-Length:

<?xml version="1.0" ?>

feed xmlns="http://www.w3.0rg/2005/Atom">
<title>Coffees to make</title>

<link rel="alternate"
href="http://example.starbucks.com/order.atom" />
<updated>2007-07-10T09:18:437Z</updated>
<author><name>Johnny Barrista</name></author>
<id>urn:starkbucks:45ftis90</id>

Host: starbucks.example.org

[Atom feed!

<entry>

<link rel="alternate" type="application/xml"
href="http://starbucks.example.org/order?1234" />
<id>urn:starbucks:a3tfpfz3</id>

</entry>

<}féed>

ThoughtWorks:

Finally drink your coffee...

“a ‘ﬂ;?

=N,

g S TR £y X - A . o Ry o
Source: http://images.businessweek.com/ss/06/0.//tapabrants

-

ThoughtWorks:

What did we learn from Starbuck’s?

- HTTP has a header/status combination for every occasion,
including failures

- And well-defined semantics for crash recovery!
« APIs are expressed in terms of links, and links are great!
- APP-esque APIs

« APIs can also be constructed with URI templates and
inference

- Trade off for tighter coupling

« XML is fine

- Can also use formats like Atom, JSON or even XHTML as a
middle ground

« State machines (defined by links) are important
- Just as in Web Services...

ThoughtWorks

But we still need middleware for non-functional requirements,
right?

WRONG!

Scalability

» Stateless model
» Caching

- Excellent for read-mostly applications

- Allows the Web to trade latency for massive
scalability

» Conditionals (Etag and friends)

== ThoughtWorks'

Reliability

» Safe, idempotent behaviours for some
verbs

- GET, HEAD, OPTIONS
- Not monadic though!
» ldempotent behaviours for some verbs
- Just re-try in the event of failure
- PUT, DELETE

 Lots of status codes and metadata to help
in failure scenarios

Security

 Don’t underestimate HTTPs!

» But longer term we have:
- OpenlID (or maybe not!)
- SAML
- OpenAuth
- Etc

== ThoughtWorks'

Transactions

» Not a good idea in large distributed
systems anyway
- Eventual consistency preferred
- Be loose with your definition of durable

« HTTP is a coordination framework anyway

- Status codes give you an idea of what to do
in failure cases

- More like workflow transactions than ACID
transactions

= ThoughtWorks'

Loose Coupling

» Our services share protocol only
- No shared middleware

» Intermediaries are transparent
- E.g. caches
» Degree of coupling becomes a design

decision, rather than arising through
accidental complexity

S Th()ughtWOl'kS®

Same Old Architects

» Business and IT people collaborate around
automating business processes and key
business artifacts

 Service architects and developers build
services
- RESTlet, NetKernel, ASP.Net MVC, Rails, etc

- Or even just the Servlet API!

» Enterprise architects spread best practices
- and undertake necessary governance roles

== ThoughtWorks'

ESB xor SOA?
» Investing in proprietary integration
systems now is investing in future legacy
» ESB is not the solution
- It’s oh-so 1990’s integration glue

» SOA is the solution

- Because it focuses on supporting business
processes

» The Web is robust platform for SOA

ThoughtWorks:

Conclusions

« SOA is the right integration architecture going forward
- SOA should be implemented incrementally

- Drive SOA from a bj [_
It looks 1ike you’re
» Most valuable pro I trying to build an
- Commoditisation ad >0A- ..
 Servers, developeg le—__-existing software, etc
« Migrating towards bOA is not always easy
- Learning to build d1 can be difficult

- ESBs and Wizards cannot help - you need service-savvy geeks and
process-aware business people

» No centralised integration middleware needed!

ThoughtWorks:

Quote of the Day

“...the idiots that are running around
yelling "guerrilla SOA™ have to be put
in their place.”

Quoted on InfoQ:
http://www.infog.com/news/2007/11/so
a-long

GET /Connected
Developing Enterprise (working title)

Web Services

An Architect's Guide J]m Webber
~ Savas Parastatidis
lan Robinson

SANDEEP CHATTERJEE, ph.D.

JAMES WEBBER, Ph.D. Expected 2009

Foreword by David Bunnedl
W v

Blog:
http://jim.webber.name

ThoughtWorks:

