
A Field Guide to your very own 

Guerrilla SOA Campaign

Dr. Jim Webber

Professional Services Director, ThoughtWorks



Fundamental Premise

There are two things money cannot buy:

1. Love
(Lennon/McCartney)

2. An SOA
(Webber)



Roadmap

• Enterprise Application Integration 
Approaches

• Enterprise Architecture, now and future

• The Appealing Rationale for ESB...

• Enterprise Architecture

• SOA and the Web

• What this means for you

• Conclusions

• Q&A



Integration Approaches

• Data integration
– Extract, transform, route, inject data

• Application level
– Re-use application APIs, or I/O mechanisms

• EAI implementation
– Queues etc

• Business domain tier
– Integration at the object level, as typified by CORBA, DCOM etc

• User interface 
– Screen scraping, revamping, etc.

– Last resort, when an application offers no other hooks

• Web Services
– Our first foray into protocol-centric integration!



To ESB or not to ESB, that is the question

• Product vendors are keen to provide 
product solution for everything

– Or to supply “consultantware” solutions

• The Enterprise Service Bus is the latest 
incarnation of EAI technology that 
supports a number of useful functions:

– Transformations; adapters; choreography; 
reliability; security etc

• Seems like a good idea...



Today’s Enterprise Architecture
Accounting Marketing

SupportProduct Development



How did we get here?

• Tactical decisions

• Time and technology pressures

• Path of least resistance for individual 

applications

• This is the thin end of the wedge, 

technical debt can only increase from 

here

• Help!



Vendor Solutions Appear

• Business needs to 
compete
– IT needs to be responsive

• SOA gives IT a business 
process focus

• Pick a technology, and…

• More proprietary 
middleware is the 
answer!
– 2 + 2 = 5

http://www.capeclear.com/technology/index.shtml



Integration Two Years Later
Accounting Marketing

SupportProduct Development

Enterprise Service Bus



Skeletons in the Closet...

Enterprise Service Bus



The Appealing Rationale for ESB...

• Perceived single framework for all 

integration needs

• Perceived simple connectivity between 

systems

• Some features for security, reliable 

delivery, etc.

• All you have to do is agree to lock 

yourself into a ESB and all this can be 

yours...



...And the Reality

• The mess is swept under the carpet hidden inside 
a vendor box
– Mixing business rules, transformations, QoS etc with 

connectors

• Vendor lock-in of the whole network!
– ESBs are proprietary, so no guarantees that the 

messages transmitted across the bus are actually 
based on any open protocol

• Held to ransom by the ESB vendor!
– Can only easily integrate systems for which the ESB 

vendor provides specific adaptors

– Or invest your money into extending their product



Intelligent Networks, Dumb Idea?

• Isn't this precisely what we're trying to 
get away from?

• Integration should happen on the wire by 
default, not inside some server

• The ESB approach eschews the dumb 
network

– Smart endpoints underpin scalable, robust 
systems

– Smart networks are failure points 



More plumbing gets built



SOA “experts” grow powerful



And ESB software grows…



… the wrong way



On a rich diet

BPM

Rules 

Engine

Low 

Latency

Adapters

GUI Tools

Transformations

Security

Reliability



Integration five years from now
Accounting Marketing

SupportProduct Development

Research

IT

Enterprise Service Bus



Integration ten years from now

Accounting Marketing

SupportProduct Development

Research

IT

ESB



Architectural Fantasy



Ungovernable



Doesn’t Scale



How did this happen?

• Same old story:
– Tactical decisions

– Time and technology pressures

– Path of least resistance for individual applications

• Centralised ownership of the ESB sometimes is an 
inhibitor
– Too much effort to get on the bus, technically, 

politically

– Individuals always mean to redress hacked 
integrations

– But seldom do – it’s too hard when systems are live



BDUF Trench Warfare



Guerrilla SOA



Spaghetti is a fact of life

• Businesses change

• Processes change

• Applications change

• Integration changes

• Need an enterprise computing strategy that:
– Reflects the changing structure of the business;

– Is spaghetti-friendly;

– Commoditised;

– Robust, secure, dependable, etc.



Business-Led Integration

• ESBs integrate with whatever existing systems expose
– Green screen, web pages, CORBA objects, XML, etc

• Integration happens at a low level
– Mapping of bits and bytes of one variety onto bits and bytes of 

another format

• This makes it hard to engage business in such projects
– Without business benefit no software has value

• Integration is currently opaque to the business

• Business must be involved in integration projects – not just 
initiate them
– The integration domain must use the same vocabulary as the 

business domain



Spaghetti-Oriented Architecture

• Fighting against spaghetti is usually unsuccessful
– This does not mean integration should be undertaken 

without diligence!

• SOA is an approach which is spaghetti-agnostic

• Services are designed for integration with any 
consumer
– Integration is decentralised

• In Web-based SOA, we model key business entities as 
Web resources

• Result:
– Loosely coupled, re-usable services

– Focus on business-meaningful atrifacts



Web Characteristics

• Scalable

• Fault-tolerant

• Recoverable

• Secure

• Loosely coupled

• Precisely the same characteristics we 
want in SOA!



Tenets for Web-based Services

• Resource-based
– Rather than service-oriented (the Web is not MOM!)

• Addressability
– Interesting things should have names

• Statelessness
– No stateful conversations with a resource

• Representations
– Resources can be serialised into representations

• Links
– Resources 

• Uniform Interface
– No plumbing surprises!



Workflow

• How does a typical enterprise workflow look 
when it’s implemented in a Web-friendly 
way?

• Let’s take Starbuck’s as an example, the 
happy path is:
– Make selection

• Add any specialities

– Pay

– Wait for a while

– Collect drink



Workflow and MOM

• With Web Services we 
exchange messages 
with the service

• Resource state is 
hidden from view

• Conversation state is 
all we know
– Advertise it with 

SSDL, BPEL, WS-Chor

• Uniform interface, 
roles defined by SOAP
– No “operations”

S
ta

rb
u
c
k
’s

 S
e
rv

ic
e

Order Drink

Add Specialities

Order Confirmation

Pay

Coffee!



Web-friendly Workflow

• What happens if workflow stages are 
modelled as resources?

• And state transitions are modelled as 
hyperlinks or URI templates?

• And events modelled by traversing links 
and changing resource states?

• Answer: we get Web-friendly workflow

– With all the quality of service provided by 
the Web



Placing an Order

• Place your order by POSTing it to a well-

known URI
– http://example.starbucks.com/order

Client

S
ta

rb
u
c
k
’s

 S
e
rv

ic
e



Placing an Order: On the Wire

• Request
POST /order HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

</order>

• Response
201 Created

Location: 

http://starbucks.example.org/

order?1234

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<link rel="payment" 

href="https://starbucks.examp

le.org/payment/order?1234"

type="application/xml"/>

</order>

A link! Is this the start 

of an API?

If we have a (private) 

microformat, this can 

become a neat API!



Whoops! A mistake

• I like my coffee to taste like coffee!

• I need another shot of espresso

– What are my OPTIONS?

Request
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.org

Response
200 OK

Allow: GET, PUT Phew! I can 

update my order, 

for now



Optional: Look Before You Leap

• See if the resource has changed since you 

submitted your order

– If you’re fast your drink hasn’t been 

prepared yet

Request
PUT /order?1234 HTTP 1.1

Host: starbucks.example.org

Expect: 100-Continue

Response
100 Continue

I can still PUT this 

resource, for now.

(417 Expectation Failed 

otherwise)



Amending an Order

• Add specialities to you order via PUT

– Starbucks needs 2 shots!

Client

S
ta

rb
u
c
k
’s

 S
e
rv

ic
e



Amending an Order: On the Wire

• Request
PUT /order?1234 HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

<link rel="payment" 

href="https://starbucks.exampl

e.org/payment/order?1234"

type="application/xml"/>

</order>

• Response
200 OK

Location: 

http://starbucks.example.org/o

rder?1234

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

<link rel="payment" 

href="https://starbucks.exampl

e.org/payment/order?1234"

type="application/xml"/>

</order>



Statelessness

• Remember interactions with resources are stateless

• The resource “forgets” about you while you’re not 
directly interacting with it

• Which means race conditions are possible

• Use If-Unmodified-Since on a timestamp to 
make sure
– Or use If-Match and an ETag

• You’ll get a 412 PreconditionFailed if you lost 
the race
– But you’ll avoid potentially putting the resource into 

some inconsistent state



Warning: Don’t be Slow!
• Can only make changes until someone 

actually makes your drink
– You’re safe if you use If-Unmodified-Since

or If-Match

– But resource state can change without you!

 Request
PUT /order?1234 HTTP 1.1

Host: starbucks.example.org

...

Response
409 Conflict

Too slow! Someone else has 

changed the state of my order

Request
OPTIONS /order?1234 HTTP 1.1

Host: starbucks.example.org

Response
Allow: GET



Order Confirmation

• Check your order status by GETing it

Client

S
ta

rb
u
c
k
’s

 S
e
rv

ic
e



Order Confirmation: On the Wire

• Request
GET /order?1234 HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

• Response
200 OK

Location: 

http://starbucks.example.org/orde

r?1234

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

<link rel="payment" 

href="https://starbucks.example.o

rg/payment/order?1234"

type="application/xml"/>

</order>

Are they trying to tell me 

something with hypermedia?



Order Payment

• PUT your payment to the order resource
https://starbucks.example.org/payment/order?1234

Client

S
ta

rb
u
c
k
’s

 S
e
rv

ic
e

New resource!

https://starbucks.example.org/payment/order?1234



How did I know to PUT?
• The client knew the URI to PUT to from the link

– PUT is also idempotent (can safely re-try) in case of failure 

• Verified with OPTIONS
– Just in case you were in any doubt 

Request
OPTIONS /payment/order?1234 HTTP 1.1

Host: starbucks.example.org

Response
Allow: GET, PUT



Order Payment: On the Wire

• Request
PUT /payment/order?1234 HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

<payment xmlns="urn:starbucks">

<cardNo>123456789</cardNo>

<expires>07/07</expires>

<name>John Citizen</name>

<amount>4.00</amount>

</payment>

• Response
201 Created

Location: 

https://starbucks.example.or

g/payment/order?1234

Content-Type: application/xml

Content-Length: ...

<payment xmlns="urn:starbucks">

<cardNo>123456789</cardNo>

<expires>07/07</expires>

<name>John Citizen</name>

<amount>4.00</amount>

</payment>



Check that you’ve paid

• Request
GET /order?1234 HTTP 1.1

Host: starbucks.example.org

Content-Type: application/xml

Content-Length: ...

• Response
200 OK

Content-Type: application/xml

Content-Length: ...

<order xmlns="urn:starbucks">

<drink>latte</drink>

<additions>shot</additions>

</order>

My “API” has changed, 

because I’ve paid enough 

now



What Happened Behind the Scenes?

• Starbucks can use the same resources!

• Plus some private resources of their own

– Master list of coffees to be prepared

• Authenticate to provide security on some 

resources

– E.g. only Starbuck’s are allowed to view 

payments



Payment
• Only Starbucks systems can access the record of payments

– Using the URI template: http://.../payment/order?{order_id}

• We can use HTTP authorisation to enforce this

Request
GET /payment/order?1234 HTTP 1.1

Host: starbucks.example.org

Response
401 Unauthorized

WWW-Authenticate: Digest 

realm="starbucks.example.org",

qop="auth", nonce="ab656...",

opaque="b6a9..."

 Request
GET /payment/order?1234 HTTP 1.1
Host: starbucks.example.org
Authorization: Digest username="jw"
realm="starbucks.example.org“
nonce="..."
uri="payment/order?1234"
qop=auth
nc=00000001
cnonce="..."
reponse="..."
opaque="..."

Response
200 OK
Content-Type: application/xml
Content-Length: ...

<payment xmlns="urn:starbucks">
<cardNo>123456789</cardNo>
<expires>07/07</expires>
<name>John Citizen</name>
<amount>4.00</amount>
</payment>



Master Coffee List
• /orders URI for all orders, only accepts GET

– Anyone can use it, but it is only useful for Starbuck’s

– It’s not identified in any of our public APIs anywhere, but the back-
end systems know the URI

Request
GET /orders HTTP 1.1

Host: starbucks.example.org

 Response
200 OK
Content-Type: application/xml
Content-Length: ...

<?xml version="1.0" ?>
<feed xmlns="http://www.w3.org/2005/Atom">
<title>Coffees to make</title>
<link rel="alternate" 
href="http://example.starbucks.com/order.atom"/>
<updated>2007-07-10T09:18:43Z</updated>
<author><name>Johnny Barrista</name></author>
<id>urn:starkbucks:45ftis90</id>

<entry>
<link rel="alternate" type="application/xml" 
href="http://starbucks.example.org/order?1234"/>
<id>urn:starbucks:a3tfpfz3</id>
</entry>
...
</feed>

Atom feed!



Finally drink your coffee...

Source: http://images.businessweek.com/ss/06/07/top_brands/image/starbucks.jpg



What did we learn from Starbuck’s?

• HTTP has a header/status combination for every occasion, 
including failures
– And well-defined semantics for crash recovery!

• APIs are expressed in terms of links, and links are great!
– APP-esque APIs

• APIs can also be constructed with URI templates and 
inference
– Trade off for tighter coupling

• XML is fine
– Can also use formats like Atom, JSON or even XHTML as a 

middle ground

• State machines (defined by links) are important
– Just as in Web Services…



WRONG!

But we still need middleware for non-functional requirements, 

right?



Scalability

• Stateless model

• Caching

– Excellent for read-mostly applications

– Allows the Web to trade latency for massive 

scalability

• Conditionals (Etag and friends)



Reliability

• Safe, idempotent behaviours for some 

verbs

– GET, HEAD, OPTIONS

– Not monadic though!

• Idempotent behaviours for some verbs

– Just re-try in the event of failure

– PUT, DELETE

• Lots of status codes and metadata to help 

in failure scenarios



Security

• Don’t underestimate HTTPs!

• But longer term we have:

– OpenID (or maybe not!)

– SAML

– OpenAuth

– Etc



Transactions

• Not a good idea in large distributed 

systems anyway

– Eventual consistency preferred

– Be loose with your definition of durable

• HTTP is a coordination framework anyway

– Status codes give you an idea of what to do 

in failure cases

– More like workflow transactions than ACID 

transactions



Loose Coupling

• Our services share protocol only

– No shared middleware

• Intermediaries are transparent

– E.g. caches

• Degree of coupling becomes a design 

decision, rather than arising through 

accidental complexity



Same Old Architects

• Business and IT people collaborate around 
automating business processes and key 
business artifacts

• Service architects and developers build 
services
– RESTlet, NetKernel, ASP.Net MVC, Rails, etc

– Or even just the Servlet API!

• Enterprise architects spread best practices
– and undertake necessary governance roles



ESB xor SOA?
• Investing in proprietary integration 

systems now is investing in future legacy

• ESB is not the solution

– It’s oh-so 1990’s integration glue

• SOA is the solution

– Because it focuses on supporting business 

processes

• The Web is robust platform for SOA



Conclusions
• SOA is the right integration architecture going forward

– SOA should be implemented incrementally

– Drive SOA from a business perspective

• Most valuable processes/applications/services first

– Commoditisation across the board

• Servers, developers, networking, re-use existing software, etc

• Migrating towards a successful SOA is not always easy

– Learning to build dependable SOAs can be difficult

– ESBs and Wizards cannot help – you need service-savvy geeks and 

process-aware business people

• No centralised integration middleware needed!

It looks like you’re 
trying to build an 
SOA...



Quote of the Day

“…the idiots that are running around 

yelling "guerrilla SOA" have to be put 

in their place.”

Quoted on InfoQ: 

http://www.infoq.com/news/2007/11/so

a-long



Questions?

Blog: 

http://jim.webber.name

GET /Connected

(working title)

Jim Webber

Savas Parastatidis

Ian Robinson

Expected 2009


