
1

What is New on the
Java Platform?
Simon Ritter
Technology Evangelist

2

Java SE 6 u10Java SE 6 u10

3

Three Deployment Routes

• Applets (Java Plug-In software)
• JNLP (Java Web Start software)
• Standalone Programs (Custom Installers)

All three paths share similar challenges

There are three major ways a Java platform program
can be distributed today

4

Deployment Challenges

• What versions of Java Technology are installed?

• How do I launch Java Technology?
• What’s the best way to install a new version?

When you consider the number of platform and
browser combinations Java technology supports,
none of these questions have simple answers

5

Present-Day Solutions

• Possible to detect JRE version 1.4.2+ using
JavaScript™ Technology

• Exact version details not available
• Auto-install too complex

> Only available for Internet Explorer on Windows
• Sun only provides sample scripts

> No complete, working solution
• Outside the browser, you're on your own

> Fun with registry manipulation
• Installation could be smoother

6

Next-Generation Installer

• New Windows look-and-feel
• More streamlined
• Less intimidating
• Improved messaging
• More visually appealing

7

Deployment Toolkit
• ActiveX Control and NPAPI Plugin included in JRE
• Script will use the plugins if available

> Fine grained JRE detection
●Pure javascript can only detect at the family

granularity
> Install any available JRE version

●Pure javascript will only install latest JRE version
> Select installation type (kernel or online installer)
> Declare application or applet required packages

• Plugins remain installed after JRE uninstallation

8

Browser Plug-Ins

• Use native code to perform tests
• JavaScript solution will check for the plug-in

> If found, delegate to plugin
• Deployment unchanged; call to JavaScript

function
> Improved accuracy on which JRE versions are

installed

9

Problem: Too Many Java Versions

• Every Java Update version is installed as a
separate program.

• Java Auto-Update cause many versions to be
installed.

• Add / Remove Programs is filled with many
versions of the JRE.

10

Solution: Patch in Place

• Patch in Place allows updating an existing Java
version to a later update of the same family.

• Static installation will be available for enterprises
that need to rely on static versioning.

• Add / Remove Programs will only see one non-
static Java Runtime installation in each family.
> Existing installations are all Static
> New versions explicitly installed statically will also be

shown.

11

JRE Release Size

JRE Version
0

1

2

3

4

5

6

7

8

9

10

11

12

Java 1.1
Java 1.2
Java 1.3
Java 1.4
Java 5.0
Java 6.0

S
iz

e
in

 M
B

12

Solution: Incremental Update

• Download only the incremental changes from the
version that the client machine actually has.
> Separate patches depending on existing install.

●For example, for 6 update 8, this would include :
6u5 -> 6u8,
6u6 -> 6u8, and 6u7 -> 6u8.

• No longer need to copy and install base images
during initial install of the first version of a family.
> Faster installation of initial version

• Occupy less disk space by not retaining base
images.

13

Modularization

• Modularize the JRE software
• A core part of the JRE is defined as the kernel

> Enough functionality to run basic program like 'Hello
World'

• The remaining JRE components are downloaded
on demand, or lazily downloaded

14

Java Kernel

• Every app needs some core functionality
> VM, networking, security, classloader

• … plus other stuff on demand
> Swing, AWT, 2D

• Kernel downloads and installs:
> Bare essentials immediately
> Additional dependencies on demand

●Referencing a class
●Class.getResource() or equivalent
●System.loadLibrary() or equivalent

> Everything else in the background

15

Java Kernel Structure

• Similar to the JRE structure
• Primary differences

> Much smaller rt.jar file
> Many files not present

• Missing class files are grouped into logical
components
> javax_swing, java_net, etc
> Based on package boundaries

16

2.4

3.1

4.3

9.1

Kernel: Bare Essentials

Core JRE
Web Start
Plug-in
Installer1374KB

367KB

197KB

82KB

17

Estimated Download Sizes

Hello World Notepad SwingSet2 LimeWire Entire JRE
0

1

2

3

4

5

6

7

8

9

10

11

12

JR
E

 S
iz

e
in

 M
B

18

Java SE 7*Java SE 7*

19

“Why don't you add X to Java?”
• Assumption is that adding features is always

good
• Application

> Application competes on the basis of completeness
> User cannot do X until application supports it
> Features rarely interacts “intimately” with each other
> Conclusion: more features are better

• Language
> Languages (most) are Turing complete
> Can always do X; question is how elegantly
> Features often interact with each other
> Conclusion: fewer, more regular features are better

20

Adding X To Java
• Must be compatible with existing code

> assert and enum keywords breaks old code
• Must respect Java's abstract model

> Should we add ability to do inline bytecode like C?
• Must leave room for future expansion

> Syntax/semantics of new feature should not conflict
with syntax/semantics of existing and/or potential
features

> Allow consistent evolution eg. keyword parameters
@Point(x=3, y=4) – keyword parameter
new Point(x = 3, y = 4) – assigment
new Point(x:3, y:3) – possible syntax
@Point(x:3, y:3) – what about this?

21

Java Platform Roadmap at a Glance

2006 2007 2008 2009

Open Sourcing Java
'It’s not a matter of when but how'

OpenJDK™ Launch

Java SE 6 Java SE 7

JavaFX SDKAnnounce
JavaFX

JRE 6u10
'Consumer JRE'

JRE 6u5p
'Performance JRE'

Modularity
Multiple Languages

Rich Clients

22

Big New Features From Sun
• Modularization (JSR-294, Project Jigsaw)
• JSR-292: VM support for dynamic languages
• JSR-TBD: Small language changes
• JSR-203: More new IO APIs
• JSR-296: Swing Application Framework

23

Project Jigsaw
The Modular JDK

24

Hello World
public class Hello {
 public static void main(String args[]) {
 System.out.println(“Hello World”);
 }
}

$ javac Hello.java

25

Hello World
$ time java Hello
Hello world

real 0m0.077s
user 0m0.022s
sys 0m0.000s
$

26

Hello World
$ time java Hello
Hello world

real 0m0.077s
user 0m0.022s
sys 0m0.000s
$ time python -c 'print “Hello world”'
Hello World

real 0m0.009s
user 0m0.008s
sys 0m0.000s

27

Hello World
$ java -verbose:classes Hello | wc -l
322

28

Requirements of a Platform Module System
• Integrate with the VM
• Integrate with the language
• Integrate with native packaging
• Support multi-module packages
• Support “friend” modules

29

New Module System For Java
• JSR-277: JAM module system

> Sun has decided to halt development of this JSR until
after Java SE 7

• JSR-294: Improved Modularity Support
> Revived and expanded expert group

• OSGi
> Looking at integration

30

The Modular JDK: Project Jigsaw

Headless

RIA
Server

JDK

Tools Desktop

31

Small Language Small Language
ChangesChanges

32

Safe Re-throw

• We want to express we are rethrowing the
exception

void open() throws InvalidClassException
, FileNotFoundException {

try { ...
} catch (Throwable e) {

logger.log(e);
throw e;

}

void open() throws InvalidClassException
, FileNotFoundException {

try { ...
} catch (final Throwable e) {

logger.log(e);
throw e;

}

Error: Unreported
exception Throwable

Compiles OK

33

Multi Catch

• Longstanding request to allow catching Ex1 and
Ex2 together

• Members of e1 and e2 have direct common
superclass
> ObjectStreamException

try { ...
} catch (InvalidClassException e) { foo(); }
} catch (InvalidObjectException e) { foo(); }
} catch (FileNotFoundException e) { bar(); }

try { ...
} catch (InvalidClassException,
 InvalidObjectException e1) { foo(); }
} catch (FileNotFoundException e2) { bar(); }

34

Null Dereference Expression

T x = null;
if (a != null) {
 B b = a.b;
 if (b != null) {
 C c = b.c;
 if (c != null)
 x = c.x;
 }
}

35

Null Dereference Expression

T x = null;
if (a != null) {
 B b = a.b();
 if (b != null) {
 C c = b.c();
 if (c != null)
 x = c.x();
 }
}

T x = a?.b()?.c()?.x();

36

Better Type Inference

Map<String, Integer> foo =
 new HashMap<String, Integer>();

37

Better Type Inference

Map<String, Integer> foo =
 new HashMap<String, Integer>();

Map<String, Integer> foo =
 new HashMap<>();

38

Small Features From Sun
• SCTP Stream Control Transport Protocol
• SDP Sockets Direct Protocol
• Upgrade class loader architecture
• Method to close URLClassLoader
• Unicode 5.0 support
• XRender pipeline for Java2D
• Swing updates

> JXLayer, DatePicker, CSS Styling (maybe)

39

New Features Not From Sun
• JSR-308: Annotations on Java types

> Prof. Michael Ernst, Mahmood Ali
• Concurrency and collections updates

> Doug Lea, Josh Bloch, etc
> Fork/join framework
> Phasers – generalised barriers
> LinkedTransferQueue – Generalised queue
> ConcurrentReferenceHashMap
> Fences: Fine grained read/write ordering

40

Annotations Today
• Annotations on declarations only

> Classes

> Methods

> Fields

> Locals

• Allow annotations on type uses

@Deprecated class Signer { ...

@Override boolean equals(...

@Id String customerId;

@SuppressWarnings(“unchecked”)
List<String> = new ArrayList();

41

JSR 308 – Annotations on Java Types
• Type checking prevents many bugs, but does

not prevent enough bugs
• Cannot express important properties about code

> Non null, interned, immutable, encrypted, ...

getValue().toString() //Potential NPE

42

Example of JSR 308
List<@NonNull String> stringList;

@NonEmpty List<String> stringList;

Graph g = new Graph();
...
//Now g2 will not be change
@Immutable Graph g2 = (@Immutable Graph)g;

//Method does not modify the object(fred) fred.marshall(...)
void marshall(@Readonly Object jaxbElement

, @Mutable Writer writer) @Readonly

43

File System API
• What's wrong with java.io.File?

> No concept of file systems, attributes, 'link', storages,
...

• Proposed new API (main classes only)
> FileSystem – factory for objects to access file and

other objects in file system
> FileRef – reference to a file or directory, contains

methods to operate on then
> Path – a FileRef that locates a file by a system

dependent path
> FileStore – underlying storage pool, device, partition,

etc
• http://openjdk.java.net/projects/nio

44

JSR 166y.forkjoin
• “Free lunch is over”

> Rely on faster CPUs to compensate for sloppy coding
• Multicore CPUs

> Next speed bump will come by exploiting these
• Concurrency and parallelism techniques are no

longer confined to HPC realm
• java.util.concurrent.forkjoin package
• Processor hints

> Runtime.availableProcessors()

45

What Will Not Be In Java SE 7
• Closures
• Other language features

> Reified generic types
> First class properties
> Operator overloading
> BigDecimal syntax

• JSR-295: Bean binding

46

Summary
• Lots of new things coming
• Will make Java applications smaller, more

concise, easier to read (and understand), less
errors

• Lots of nice libraries that are going to exploit the
hardware

• Platform will be more robust and scalable
• Expect Java SE 7 early 2010

●

–

47

Simon Ritter
Technology Evangelist
simon.ritter@sun.com

