
1

JavaFX

Simon Ritter
Technology Evangelist

2

JavaFX Vision

JavaFX is the platform for creating and delivering
 Rich Internet Applications

across all the screens of your life

JavaFX is Powered by Java

3

OverviewOverview

4

JavaFX: Design Questions

• Why does it take a long time to write Java GUI
programs?

• How can we avoid the “Ugly Java GUI”
stereotype?

• Why do Flash programs look different to Java
programs?

• Why does it seem easier to write web-apps than
Swing programs?

• And how can I avoid having an enormous,
writhing mass of listener patterns?

5

Java GUIs: Why are they not so rich?

• AWT/Swing Container/Component Hierarchy
> A tree of rectangular (mostly grey) boxes
> If all you do is compose Swing components together,

the result is typically “the Ugly Java GUI”
> Same problem exists with other toolkits, e.g., GTK, VB

• UI Designers and Swing programmers are using
different building blocks
> UI Designers compose designs in tools like Photoshop

and Illustrator
> The building blocks they use have direct analogs in

Java 2D, but not always directly in Swing

6

A Basic Java GUI: Not Very Pretty

7

Java 2D API
• To match the designs of UI designers

requires using Java 2D API
• Java 2D API doesn’t have compositional

behavior
> Makes it too complex for many programmers

to use efficiently
• JavaFX combines elements of Swing with

Java2D
• Goal is to move away from direct Swing

usage to a node based scene graph
> More like 3D (which will also be supported)

8

JavaFX Platform Architecture

VM

Core
APIs

Media
Players

Media
Codecs

Scene
Graph

Ad
Player

Installer

FXScript
runtime

Device
Specific

APIs

FX
Compiler

FX Applications

Device OS

WebKit

9

JavaFX Technology Stack

Java2D
java.awt.*

SceneGraph
com.sun.scenario.scenegraph.*
com.sun.scenario.animation.*
com.sun.scenario.effects.*

JavaFX Script Programming Language
javafx.ext.swing.*

javafx.scene.effect.*
javafx.animation.*

Ja
va

 A
PI

s
sc

rip
t

Swing
javax.swing.*

Note: JavaFX Script programs can call any Java APIs

10

JavaFX ScriptJavaFX Script

11

JavaFX Script Basics

• Declarative, statically-typed scripting language
• Facilitates rapid GUI development
• Many cool, interesting language features
• Runs on the Java Virtual Machine
• Deployment options same as Java programs

> Applet, Application, WebStart
• Fully utilizes Java class libraries behind the

scenes
• For content designers and media engineers

12

Declarative Syntax

• Stop thinking in Java, start thinking more
scripting

• Think “what”, not “how”
• In Java we need to program how a GUI is

displayed
> Layout managers, Panels, Components, etc

• JavaFX is more like HTML
> Tell JavaFX what you want
> Let JavaFX figure out how to display it
> No porting between screens (desktop, mobile, etc)

13

Basic JavaFXScript Class

class HelloWorldNode extends CustomNode {
 public var text:String;
 public override function create(): Node {
 return Text {
 x: 10, y: 50
 font: Font {
 size: 50
 }
 content: bind text

}
};

}

Syntax is Java-like with shades of JavaScript

14

JavaFX Types

• Number
• Integer
• Boolean
• String
• Duration
• Void can be used for function return types

15

Declarations
• Variables
•
• Constants
•
• Access modifiers

>public – everyone should know this
>public-init – can only be set in constructor
>public-read – can only be set by the object

var fred:Number;

def PI:Number = 22 / 7;

16

Sequences
• Sequences

• Insert, delete, membership and reverse

• Slice via range and predicate

var time:Duration[] = [60ms, 60s, 60m, 60h];

var days = [1..31];

insert 5s into time;

delete 31 from days;

var revDays = reverse days;

if (!(31 in days) or (30 in days)) “February”

var oddDays = days[n | (n % 2) == 1];

var firstThree = time[0..<2]; //Include 3

17

Classes

class Person {
 var name: String;
 var parent: Person inverse
 Person.children;
 var children: Person* inverse
 Person.parent;
 function getNumberOfChildren(): Number {
 return sizeof this.children;
 }
}

18

• Cause and Effect - Responding to change
• bind operator - Allows dynamic content to be expressed

declaratively
• Automated by the system—Rather than manually wired

by the programmer
• You just declare dependencies and the JavaFX runtime

takes care of performing updates when things change
• Eliminates listener patterns

Binding in JavaFX

19

Binding

• Dependency-based evaluation of expressions
• Enables expression of dynamic data

relationships
var x = 10;
var y = bind x + 100;
x = 50;
y == 150; // true

• Any expression can be bound
> conditionals, loops, functions, etc...

• bind “with inverse” when 2-way is needed
• lazy binding to only evaluate when used

20

Class SceneElement extends SceneNode { attribute sx: Number;
 attribute sy: Number; attribute r: Number;
 attribute canSee: Boolean;
 public function create(): Node { return Circle {
 radius: bind r centerX: bind sx
 centerY: bind sy fill: Color.RED
 translateX: bind sx + transX translateY: bind sy + transY
 visible: bind canSee }
 }

Binding Example

21

Binding Example

 function update(nx: Number, ny: Number) { sx = nx;
 sy = ny;
 // Even one line if statement must have {} if (nx > 0 and ny > 0) {
 canSee = true; } else {
 canSee = false; }
 }}

22

Bound Functions
• Changes to the internal values of a function will

cause the entire function to be reevaluated
>Used in conjunction with bind

var scale = 1;
function makePoint(xt:Number, yt:Number): Point {

return Point {
x: xt * scale, y: yt * scale

};
}
var x = 3;
var y = 3;
var myPoint = bind makePoint(x, y);
x = 5;
FX.println(myPoint.x) //The value is 5
scale = 3;
FX.println(myPoint.x) //The value is 5

23

Example – Bounded Function

var scale = 1;
bound function makePoint(xt:Number, yt:Number): Point {

return Point {
x: xt * scale, y: yt * scale

};
}

var x = 3;
var y = 3;
var myPoint = bind makePoint(x, y);
x = 5;
FX.println(myPoint.x) //The value is 5
scale = 3;
FX.println(myPoint.x) //The value is 15

24

Expressions

• while, try – Same syntax as Java
• if statement must always have braces

> Even for single line
• Use and/or rather than &&/||
• for (i in [0..10]) ...
• for (i in [0..10] where i%2 == 0)
...

• for (i in [0..10], j in [0..10]) ...

25

Triggers
• Associate a block of code to a variable
• When the value of the variable changes, the

code is executed
>Similar to PropertyChangeListener

//oldValue is optional

var text on replace oldValue {

FX.println(“Old value = '{oldValue}'”);

FX.println(“New value = '{text}'”);

}
text = “Hello”

Old value = ''

New value = 'Hello'

26

Scene Graph Nodes: javafx.gui.*

Group

Node

Arc
Circle

CubicCurve
Ellipse
Line
Path

Polygon
Polyline
QuadCurve
Rectangle

Text

Shape

Transform
Affine
Rotate
Scale
Shear

Translate

HBoxVBox
ComponentView*

ImageView
MediaView

27

Custom Shapes
• Two ways of defining custom shapes

>Combining existing shapes
>Drawing a totally new shape
• Combine existing shape with ShapeIntersect

or ShapeSubtract
>Operate on the union of one set of shape with another set
• Draw new shapes with Path and path elements

>Path elements include MoveTo, ArcTo, HLine, VLine,
QuadCurve, etc.
• Can be manipulated like a regular geometric

shape

28

Example – ShapeIntersect
ShapeIntersect {

transforms: [Translate { x: 170 }]
fill: Color.LIGHTGREEN
stroke: Color.GREEN
strokeWidth: 3
//Union of the 2 shapes
a: [rectangle diamond]

}

29

Example – Path
Path {

fill: Color.LIGHTGRAY
stroke: Color.GRAY
strokeWidth: 3

 elements: [
 MoveTo { x: 15 y: 15 },
 ArcTo { x: 50 y: 10 radiusX: 20

radiusY: 20 sweepFlag: true},
 ArcTo { x: 70 y: 20 radiusX: 20

radiusY: 20 sweepFlag: true},
 ArcTo { x: 50 y: 60 radiusX: 20

radiusY: 20 sweepFlag: true},
 ArcTo { x: 20 y: 50 radiusX: 10

radiusY: 5 sweepFlag: false},
 ArcTo { x: 15 y: 15 radiusX: 10

radiusY: 10 sweepFlag: true},
]
}

30

Effects: javafx.gui.effects.*

DisplacementMap
PerspectiveTransform

InvertMask
ColorAdjust
SepiaTone

GaussianBlur
MotionBlur

Blend
Bloom
Glow

Lighting
Flood

Reflection
Shadow

InnerShadow
DropShadow

Effect

Light

DistanceLight
PointLight
SpotLight

31

Some Effects Supported In JavaFX
effect: SepiaTone { level: 0.5 }

effect: Glow { level: 0.7 }

effect: GaussianBlur {

input: SepiaTone {

level: 0.5 }

radius: 10.0

}

effect: Reflection {

fraction: 0.7

}

Original image

32

Lighting Effect
effect: Lighting{

surfaceScale: 7
light: DistantLight{

azimuth: 90
elevation: 30

}
}

effect: Lighting{
surfaceScale: 7
light: SpotLight {

x: 0 y :0 z: 50
pointsAtX: 10
pointsAtY: 10
pointsAtZ: 0

}
}

33

Animation - javafx.animation.*

action
canSkip
time

timelines
values

KeyFrame

TimeLine
autoReverse
INDEFINITE
keyFrames
repeatCount
running
toggle

InterPolator

DISCRETE
EASEBOTH
EASEIN
EASEOUT
LINEAR

34

Animation

• Timelines handles the animation in JavaFX
• Timelines are first-class citizen in the language

along with the duration time constants (1s, 10s)
• They can have one or more KeyFrames
• Methods: start(), stop(), pause(), resume()
• Properties: autoReverse, repeatCount, toggle
• Timelines are nestable

35

Example – Defining Key Frames
Timeline {

keyFrames: [
KeyFrame {

time: 0s
values: [radius => 30]

 }
KeyFrame {

time: 5s
values: [

radius => 300 tween Interpolator.LINEAR
]

}
]

}

0s 1s 2s 3s 4s 5s 6s

Key value
radius = 30 radius = 300

Keyframes

How the value changes over time

36

Example – Shorthand Notation
Timeline {

keyFrames: [
at(0s) {

radius => 30
}
at(5s) {

radius => 300 tween Interpolator.LINEAR
}

]
}

0s 1s 2s 3s 4s 5s 6s

Key value
radius = 30 radius = 300

Keyframes

How the value changes over time

37

Transitions
• Animations classes to animate common node

attributes
>Position, rotation, opacity, etc.
• Out of the box transitions

>RotateTranstion – rotation
>FadeTransition – opacity
>TranslateTransition – move a node along a straight
line
>PathTransition – move an object along a defined path
>ScaleTranstion – grows or shrinks a node

38

Example – Path Transition
var earth:ImageView = ImageView {
 x: sx y: sy
 image: Image { url: "file:////home/cmlee/earth.png" }
}
def path = [

MoveTo { x: sx y: sy}
ArcTo { x: 0 y: 200

radiusX: 50 radiusY: 50 sweepFlag: true
}

];
var aniPath:PathTransition = PathTransition {
 node: earth
 path: AnimationPath.createFromPath(Path {elements: path })
 duration: 1500ms
}

aniPath.playFromStart();

file:///C:/Documents%20and%20Settings/earth.png

39

JavaFX Media Design Goals

• Media Playback is of primary importance
• Simple API: only a few lines of coded needed
• Cross platform A/V format required
• Native support also desirable

> “Mash ups”
> Viewing local media

• Zero Configuration plug in support
> Drop in format support

• Going beyond rectangular video
> Support lightweight rendering

40

Java Media Components (JMC)

• Cross Platform Video Format Support
> Encode once, play anywhere
> Over time, multiple formats may be supported

●Sun Open Media Stack (OMS)
• Leverages native platform

> Windows
●Play Windows Media via DirectShow
●Flash via the ActiveX control

> Mac
●Quicktime and Core Audio/Video.

> Linux and Solaris
●GStreamer

41

Media in JavaFX

• Media classes are part of javafx.gui package
• Media, MediaPlayer and MediaView

> MediaView is a Node
●has a MediaPlayer
●MediaPlayer has a Media object.

> MediaView may be rotated, translated, sheared, and
have filter effects applied to it.

> Multiple views may be bound to single player.
• MediaTimers allow functions to be invoked at key

points in Media.
• Other media events may be triggered

42

JavaFX Media Example
var media = Media{source: ”movie.mov”};
var player = MediaPlayer{media: media, autoPlay:true};
var mediaView = MediaView{
 // To enable audio only, don't create MediaView
 MediaView{
 mediaPlayer: player,
 onMouseClicked: function(e) { // Play/pause control
 if (player.paused) {
 player.play();
 } else {
 player.pause();
 }
 }

 rotate: 90; // Rotate
}

43

JavaFX NetBeans IDE Plugin

• New for NetBeans 6.1 and later
• Supports conventional development cycle

> edit, compile, run, test
> Also has preview mode (avoid compile/run)

• Specific project type for JavaFX
• Automatic installation of JavaFX SDK
• Editor supports code completion, drag and drop

of components
> Not fully polished yet

44

Further Information

http://www.javafx.com
http://www.sun.com/javafx
http://openjfx.org
http://jfx.wikia.com/wiki/Planet_JFX_Wiki
http://learnjavafx.typepad.com/
http://blogs.sun.com/chrisoliver

●

–

45

Simon Ritter
 simon.ritter@sun.com

