
Ola Bini
JRuby Core Developer
ThoughtWorks Studios

ola.bini@gmail.com
http://olabini.com/blog

Future of the Java 
platform



About me



About me
Ola Bini



About me
Ola Bini

Works for ThoughtWorks



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha

Member of the JSR292 expert group



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha

Member of the JSR292 expert group



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha

Member of the JSR292 expert group



Java as a platform



Java as a platform
Other languages



Java as a platform
Other languages

Libraries



Java as a platform
Other languages

Libraries

Platform independence



Java as a platform
Other languages

Libraries

Platform independence

Higher level abstractions



Java as a platform
Other languages

Libraries

Platform independence

Higher level abstractions

Java the language as systems language?



The Java platform?



The Java platform?



Other languages
Hecl
Jacl

Clojure
Ync/Javascript

JoyJ
v-language

CAL
Aardappel

Funnel
Mini

PLAN
Sixx

BDC Scheme
ABCL

Lili
Jatha

Bigloo
SISC
Lisp
PS3i

HotScheme
webLISP

Jaja
JScheme

Skij
Kawa
uts

JBasic
Mapyrus

CONVERT
HotTEA
COCOA
NetLogo
StarLogo
AJLogo

Turtle Tracks
rLogo
Yoyo

TermWare
XProlog

tuProlog
JLog
LL

javalog
SmallWorld

Bistro
Talks2
Obol

Groovy
Nice
Scala
Anvil
dSelf
Hojo

Correlate
MetaJ
Sather

Quercus
FScript
Sleep

WLShell
JudoScript

JRuby
Jickle
Rhino

BeanShell
Resin
Jython
Pnuts
Janino

Join Java
JMatch
iScript
Yassl
Yoix
W4F

PERCobol
Bex Script

Demeter/Java
CKI Prolog



Other languages: Clojure



Other languages: Clojure
Lisp dialect - code as data



Other languages: Clojure
Lisp dialect - code as data

Designed for the JVM



Other languages: Clojure
Lisp dialect - code as data

Designed for the JVM

Powerful macros



Other languages: Clojure
Lisp dialect - code as data

Designed for the JVM

Powerful macros

Good interoperability with Java



Other languages: Clojure
Lisp dialect - code as data

Designed for the JVM

Powerful macros

Good interoperability with Java

Functional programming language



Other languages: Clojure
Lisp dialect - code as data

Designed for the JVM

Powerful macros

Good interoperability with Java

Functional programming language

Concurrency



Other languages: Groovy



Other languages: Groovy
Dynamic, strongly typed



Other languages: Groovy
Dynamic, strongly typed

Object oriented



Other languages: Groovy
Dynamic, strongly typed

Object oriented

Designed for the JVM



Other languages: Groovy
Dynamic, strongly typed

Object oriented

Designed for the JVM

Inspired by Python, Ruby and Smalltalk



Other languages: Groovy
Dynamic, strongly typed

Object oriented

Designed for the JVM

Inspired by Python, Ruby and Smalltalk

Good integration with Java



Other languages: Scala



Other languages: Scala
Multiparadigm language



Other languages: Scala
Multiparadigm language

Object orientedness



Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming



Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming

Designed for the JVM



Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming

Designed for the JVM

Concurrency: Immutability and actors



Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming

Designed for the JVM

Concurrency: Immutability and actors

Includes many advanced language features



Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming

Designed for the JVM

Concurrency: Immutability and actors

Includes many advanced language features

Pattern matching, closures, parametric polymorphism



Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming

Designed for the JVM

Concurrency: Immutability and actors

Includes many advanced language features

Pattern matching, closures, parametric polymorphism

Sequence comprehensions, mixins, infix or postfix statements



The Java Virtual Machine



The Java Virtual Machine
The JVM is a great virtual machine



The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)



The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)

GC & object structure



The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)

GC & object structure

Mature and provies lots of algorithms and parameters



The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)

GC & object structure

Mature and provies lots of algorithms and parameters

Reflective access to classes and objects



The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)

GC & object structure

Mature and provies lots of algorithms and parameters

Reflective access to classes and objects

Tools (JMM, JVMTI, dtrace)



The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)

GC & object structure

Mature and provies lots of algorithms and parameters

Reflective access to classes and objects

Tools (JMM, JVMTI, dtrace)

Good libraries and a useful language to write more



The Java Virtual Machine



The Java Virtual Machine
Optimizing Just-In-Time compiler



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference

Customization



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference

Customization

Profiling



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference

Customization

Profiling

Deoptimizing



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference

Customization

Profiling

Deoptimizing

Fast/slow paths



The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference

Customization

Profiling

Deoptimizing

Fast/slow paths

The JVM is mature



Needs of higher level languages



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)

Exotic primitives (tail calls, bignums, call/cc)



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)

Exotic primitives (tail calls, bignums, call/cc)

Code management integrated with execution



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)

Exotic primitives (tail calls, bignums, call/cc)

Code management integrated with execution

Robust handling of incorrect inputs



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)

Exotic primitives (tail calls, bignums, call/cc)

Code management integrated with execution

Robust handling of incorrect inputs

Helpful runtime support libraries (regexps, math)



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)

Exotic primitives (tail calls, bignums, call/cc)

Code management integrated with execution

Robust handling of incorrect inputs

Helpful runtime support libraries (regexps, math)

A compiler that understands it all



Needs of higher level languages
Very late binding (runtime linking, typing, code gen)

Automatic storage management (GC)

Environmental queries (reflection, stack walking)

Exotic primitives (tail calls, bignums, call/cc)

Code management integrated with execution

Robust handling of incorrect inputs

Helpful runtime support libraries (regexps, math)

A compiler that understands it all



What’s missing?



What’s missing?
Dynamic invocation



What’s missing?
Dynamic invocation

Lightweight method objects



What’s missing?
Dynamic invocation

Lightweight method objects

Lightweight bytecode loading



What’s missing?
Dynamic invocation

Lightweight method objects

Lightweight bytecode loading

Continuations and stack introspection



What’s missing?
Dynamic invocation

Lightweight method objects

Lightweight bytecode loading

Continuations and stack introspection

Tail calls and tail recursion



What’s missing?
Dynamic invocation

Lightweight method objects

Lightweight bytecode loading

Continuations and stack introspection

Tail calls and tail recursion

Tuples and value-oriented types



What’s missing?
Dynamic invocation

Lightweight method objects

Lightweight bytecode loading

Continuations and stack introspection

Tail calls and tail recursion

Tuples and value-oriented types

Immediate wrapper types



What’s missing?
Dynamic invocation

Lightweight method objects

Lightweight bytecode loading

Continuations and stack introspection

Tail calls and tail recursion

Tuples and value-oriented types

Immediate wrapper types



Dynamic invocation



Dynamic invocation
Non-Java call site in the bytecodes



Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler



Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler

Determines linking at runtime



Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler

Determines linking at runtime

Works in a reflective style



Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler

Determines linking at runtime

Works in a reflective style

Installs direct (non-reflective) methods



Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler

Determines linking at runtime

Works in a reflective style

Installs direct (non-reflective) methods

Stateful: can be updated or revoked over time



Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler

Determines linking at runtime

Works in a reflective style

Installs direct (non-reflective) methods

Stateful: can be updated or revoked over time

Any dynamic language will benefit greatly



Symbolic freedom



Symbolic freedom
Allow any identifier as name



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this

Support for Ruby style names



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this

Support for Ruby style names

empty?



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this

Support for Ruby style names

empty?

value=



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this

Support for Ruby style names

empty?

value=

clear!



Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this

Support for Ruby style names

empty?

value=

clear!

Canonical name mangling



Closures



Closures
Several closure proposals right now



Closures
Several closure proposals right now

All of them will benefit from the previous ideas



Closures
Several closure proposals right now

All of them will benefit from the previous ideas

But it isn’t required



Closures
Several closure proposals right now

All of them will benefit from the previous ideas

But it isn’t required

Most of the machinery for closures is already in place



Closures
Several closure proposals right now

All of them will benefit from the previous ideas

But it isn’t required

Most of the machinery for closures is already in place

It’s just a question of deciding ...



The DaVinci machine



The DaVinci machine
Evolutionary adaptation of the present JVM



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful

While incubating, features are disabled by default



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful

While incubating, features are disabled by default

Eventual convergence



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful

While incubating, features are disabled by default

Eventual convergence

Prototype JVM extensions to run non-Java languages efficiently



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful

While incubating, features are disabled by default

Eventual convergence

Prototype JVM extensions to run non-Java languages efficiently

First class architectural support (no hack or side-cars)



The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful

While incubating, features are disabled by default

Eventual convergence

Prototype JVM extensions to run non-Java languages efficiently

First class architectural support (no hack or side-cars)

New languages to co-exist gracefully with Java 



The DaVinci machine



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7

Why?



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7

Why?

Language implementers know what they want



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7

Why?

Language implementers know what they want

and how to simulate it at 100x slowdown



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7

Why?

Language implementers know what they want

and how to simulate it at 100x slowdown

VM implementers know what VMs can do



The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7

Why?

Language implementers know what they want

and how to simulate it at 100x slowdown

VM implementers know what VMs can do

Let’s bring them together



JSR 292



JSR 292
Supporting dynamically type languages



JSR 292
Supporting dynamically type languages

Main features



JSR 292
Supporting dynamically type languages

Main features

invoke_dynamic



JSR 292
Supporting dynamically type languages

Main features

invoke_dynamic

Method handles



JSR 292
Supporting dynamically type languages

Main features

invoke_dynamic

Method handles

Hotswapping



JSR 292
Supporting dynamically type languages

Main features

invoke_dynamic

Method handles

Hotswapping

Representatives from JRuby, Groovy, Jython, among others



JSR 292
Supporting dynamically type languages

Main features

invoke_dynamic

Method handles

Hotswapping

Representatives from JRuby, Groovy, Jython, among others

Focus on VM support



The JVM languages group



The JVM languages group
Focus on library level support for languages running on the JVM



The JVM languages group
Focus on library level support for languages running on the JVM

Discussions about current pain points



The JVM languages group
Focus on library level support for languages running on the JVM

Discussions about current pain points

Meta-object protocol



The JVM languages group
Focus on library level support for languages running on the JVM

Discussions about current pain points

Meta-object protocol

Java method overload resolution at runtime



The JVM languages group
Focus on library level support for languages running on the JVM

Discussions about current pain points

Meta-object protocol

Java method overload resolution at runtime

Representatives from Java, JRuby, Jython, Groovy, Pnuts, Ioke, 
Scala, Clojure, Nice, Ng, and many more



Java 7



Java 7
Probably early 2010



Java 7
Probably early 2010

Provisional:



Java 7
Probably early 2010

Provisional:

Modularization



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow

Null dereferencing



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow

Null dereferencing

Better type inferencing for generics



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow

Null dereferencing

Better type inferencing for generics

Multi catch



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow

Null dereferencing

Better type inferencing for generics

Multi catch

Better Swing



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow

Null dereferencing

Better type inferencing for generics

Multi catch

Better Swing

6u10 features - Java Kernel, Quickstarter, new plugin



Java 7
Probably early 2010

Provisional:

Modularization

JSR 292 - Dynamic languages

JSR 203 - Better I/O support, asynch I/O, revamped file system API

Safe rethrow

Null dereferencing

Better type inferencing for generics

Multi catch

Better Swing

6u10 features - Java Kernel, Quickstarter, new plugin



Not in Java 7



Not in Java 7
Closures



Not in Java 7
Closures

Reified generics



Not in Java 7
Closures

Reified generics

1st class propertiers



Not in Java 7
Closures

Reified generics

1st class propertiers

Operator overloading



Not in Java 7
Closures

Reified generics

1st class propertiers

Operator overloading

BigDecimal syntax



Not in Java 7
Closures

Reified generics

1st class propertiers

Operator overloading

BigDecimal syntax

JSR 295 - Beans binding



Not in Java 7
Closures

Reified generics

1st class propertiers

Operator overloading

BigDecimal syntax

JSR 295 - Beans binding



After?



After?
Look to C# - more advanced language features



After?
Look to C# - more advanced language features

But not as much backwards compatibility



After?
Look to C# - more advanced language features

But not as much backwards compatibility

JavaFX



After?
Look to C# - more advanced language features

But not as much backwards compatibility

JavaFX

Java as a platform



After?
Look to C# - more advanced language features

But not as much backwards compatibility

JavaFX

Java as a platform



AQ and


