
Ola Bini
JRuby Core Developer
ThoughtWorks Studios

ola.bini@gmail.com
http://olabini.com/blog

Future of the Java 
platform



About me



About me
Ola Bini



About me
Ola Bini

Works for ThoughtWorks



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha

Member of the JSR292 expert group



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha

Member of the JSR292 expert group



About me
Ola Bini

Works for ThoughtWorks

From Sweden - duh

Involved with several languages on the JVM:

Ioke

JRuby

Jatha

Member of the JSR292 expert group



Java as a platform



Java as a platform
Other languages



Java as a platform
Other languages

Libraries



Java as a platform
Other languages

Libraries

Platform independence



Java as a platform
Other languages

Libraries

Platform independence

Higher level abstractions



Java as a platform
Other languages

Libraries

Platform independence

Higher level abstractions

Java the language as systems language?



The Java platform?



The Java platform?



Other languages
Hecl
Jacl

Clojure
Ync/Javascript

JoyJ
v-language

CAL
Aardappel

Funnel
Mini

PLAN
Sixx

BDC Scheme
ABCL

Lili
Jatha

Bigloo
SISC
Lisp
PS3i

HotScheme
webLISP

Jaja
JScheme

Skij
Kawa
uts

JBasic
Mapyrus

CONVERT
HotTEA
COCOA
NetLogo
StarLogo
AJLogo

Turtle Tracks
rLogo
Yoyo

TermWare
XProlog

tuProlog
JLog
LL

javalog
SmallWorld

Bistro
Talks2
Obol

Groovy
Nice
Scala
Anvil
dSelf
Hojo

Correlate
MetaJ
Sather

Quercus
FScript
Sleep

WLShell
JudoScript

JRuby
Jickle
Rhino

BeanShell
Resin
Jython
Pnuts
Janino

Join Java
JMatch
iScript
Yassl
Yoix
W4F

PERCobol
Bex Script

Demeter/Java
CKI Prolog
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Other languages: Groovy
Dynamic, strongly typed

Object oriented

Designed for the JVM

Inspired by Python, Ruby and Smalltalk

Good integration with Java
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Other languages: Scala
Multiparadigm language

Object orientedness

Functional programming

Designed for the JVM

Concurrency: Immutability and actors

Includes many advanced language features

Pattern matching, closures, parametric polymorphism

Sequence comprehensions, mixins, infix or postfix statements
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The Java Virtual Machine
The JVM is a great virtual machine

Flexible online code loading (with safe bytecodes)

GC & object structure

Mature and provies lots of algorithms and parameters

Reflective access to classes and objects

Tools (JMM, JVMTI, dtrace)

Good libraries and a useful language to write more
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The Java Virtual Machine
Optimizing Just-In-Time compiler

Clever performance techniques

Type inference

Customization

Profiling

Deoptimizing

Fast/slow paths

The JVM is mature
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Dynamic invocation
Non-Java call site in the bytecodes

Language-specific handler

Determines linking at runtime

Works in a reflective style

Installs direct (non-reflective) methods

Stateful: can be updated or revoked over time

Any dynamic language will benefit greatly
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Symbolic freedom
Allow any identifier as name

JVM identifiers originally based on the Java language

No real reason for this

Support for Ruby style names

empty?

value=

clear!

Canonical name mangling
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Closures
Several closure proposals right now

All of them will benefit from the previous ideas

But it isn’t required

Most of the machinery for closures is already in place

It’s just a question of deciding ...
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The DaVinci machine
Evolutionary adaptation of the present JVM

Open-ended experiment

Wild ideas are considered, but must prove useful

While incubating, features are disabled by default

Eventual convergence

Prototype JVM extensions to run non-Java languages efficiently

First class architectural support (no hack or side-cars)

New languages to co-exist gracefully with Java 
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The DaVinci machine
Most of the features mentioned above have or will be 
implemented here

Will eventually decide what makes it in Java 7

Why?

Language implementers know what they want

and how to simulate it at 100x slowdown

VM implementers know what VMs can do

Let’s bring them together
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JSR 292
Supporting dynamically type languages

Main features

invoke_dynamic

Method handles

Hotswapping

Representatives from JRuby, Groovy, Jython, among others

Focus on VM support
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The JVM languages group
Focus on library level support for languages running on the JVM

Discussions about current pain points

Meta-object protocol

Java method overload resolution at runtime

Representatives from Java, JRuby, Jython, Groovy, Pnuts, Ioke, 
Scala, Clojure, Nice, Ng, and many more
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