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About me

B Passionate programmer
B Concurrency enthusiast

7 Nars
B GPars @ Codehaus lead s

B Technology evangelist @ JetBrains

B JetBrains Academy member

http://www.jroller.com/vaclav
http://twitter.com/vaclav_pech
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http://www.jroller.com/vaclav
http://twitter.com/vaclav_pech
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GPars

Apache 2 license

Hosted @ Codehaus

S5 commiters

Tight relation with the Groovy team

Originally named GParallelizer
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Pantha rei

Entering a new era!

Wors
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We're quad core already

Beware: More cores to come shortly!
NDars



Stone age of parallel SW

B Dead-locks

B | jve-locks

B Race conditions
B Starvation

B Shared Mutable State
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Locks and threads

Multithreaded programs today work mostly
by accident!
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Toolset

Fork/Join

Actors Collections

Nars
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Parallelizer
{
images. {it.contains me}
{convert it}
{it.size()}
h
B |mportant:

Side-effect-free functions only!
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Transparently parallel

{
images.
{it.contains me}
{convert it}

{it.size()}
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Parallelize existing code

buyBargain stocks.

—
- N -~ NS  Na- ~="

def buyBargain(stocks) {
buy stocks. {
it.download().price < 50

J

}
Use with CAUTION!
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Functional flavor

Map / Reduce

map, reduce, filter, min, max, sum, ...

(1..n). filter {it%2==0}
.map {it ** 2}
reduce {a, b -> a + b}
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Call closures asynchronously

def isSelfPortrait = {image -> image.contains me}
def flag = isSelfPortrait.call(img1)

def future = isSelfPortrait. (img1)

def flag = future.get()
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Asynchronous closures

def = {img -> img.resize(64, 64)}
def = resize.
def resized = images.collect

createAlbum resized*.get()
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Fork/Join Orchestration

protected void compute() {
long count = 0;
file.eachFile {
if (it.isDirectory()) {
println "Forking a thread for $it"

| (new FileCounter(it)) Waits for children
}ecieu;'-] " without blocking the
} thread!
}
(count + ( ?.sum() ?: 0))
}
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GroovyDSL — Intellid IDEA CE

I intellijIDEA

Parallelizer.dolarallel |
images.collectParallel {it.tolbGrayicale()!
1f (images.anyFParallel {it.zize() > Mix IMG: 5IZE}) rejectImages()
def fanilvInagez = ilmages.findall

} o - findall (Closure closure) Collection<T>-
m| T findillParallel (Closure closure] Object
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Dataflow Concurrency

B No race-conditions

B No live-locks

B Deterministic deadlocks
Completely deterministic programs

BEAUTIFUL code

(Jonas Bonér)

WNors
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Dataflow Variables

task { z << x.val + y.val }
task { x << 40 }
task {y << 2}

assert 42 == z.val

B Single-assignment variables

with blocking read
Nars



DataFlows

def df = new ()
task { di.z=df.x + di.y }
task { df.x =10}

task { df.y =5}

assert 15 ==df.z
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DataFlows Making Money

def stocks = [[AAPL', 'GOOG', 'IBM', 'JAVA']

wt s 4

def = new DataFlows()

o “efle
o
efeo,

stocks.each( {stock ->
[stock] = getClosing(stock, 2009)

}-async())

def topStock = stocks.max { [it] } Wors
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Dataflow Operators

operator(inputs: [stocksStream],
outputs: [pricedStocks])
{ >
def = getClosing( , 2008)
bindOutput(0, [stock: , price: 1)
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Actors

B |solated
B Communicating
“'Immutable messages
B Active
IPooled shared threads
B Activities
“ICreate a new actor

-1Send a message Thread pool
-'Receive a message

Wors
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Actors use

HTTP

Form

Response
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Actors patterns

B I

Enricher
Router
Translator
Endpoint
Splitter
Agregator
Filter
Resequencer
Checker
NDors
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Creating Actors

class MyActor extends {
void {
def buddy = YourActor()
buddy ‘Hi man, how\'re things?’
def response = ()

Wors
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Creating Actors

def decryptor = actor {
loop {
react {msg ->
reply msg.reverse()

;
}
}

decryptor << ‘noitcA nl yvoorG’
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Sending messages

buddy.send 10.eur

buddy << new Book(title:' Groovy Recipes’,
author: Scott Davis’)

def canChat = buddy.sendAnd\Wait ‘Got time™?”’

buddy.sendAndContinue ‘Need money!’, {cash->
pocket.add cash

)
Wors
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Reacting to messages

react {gift1 ->
reply "Thank you for $gift1”
react {gift2 ->
reply "Wow, one more $gift2”

[gift1, gift2].max{it.price}.reply
‘Will you marry me”?”’

J

/INever reached

)
Wors
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Choosing the Reaction

{gift ->
switch (gift) {

case Money: ;pocket gift; break
case [iPhone, iPod]:child << gift; break
case (BigFlat..SmallHouse):moveln(gift); break
case Clothes:

putOn(gift)

fits(gift)?reply ; gift

break
case EXIT:

Wors
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Continuation Style

loop {
react {
react {

}

/INever reached

}

/INever reached

}

/INever reached o, s
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Dynamic Dispatch Actor

def actor = new ({
{BigDecimal num ->
printin }
{String code ->
compileAndRun code }
{Book book ->
read book }

Wors
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Safe (Agent)

B | ock Shared Mutable State in a Safe
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Safe inside @

Message Queue

Nars
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Safe List

def jugMembers = new Safe( ) //add Me

task {
jugMembers.send //add Joe
}
task {
jugMembers << /ladd Dave
jugMembers << /ladd Alice
}

printin jugMembers.

Wors
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Integration

B Bundled with Groovy dists

B \aven
B Gradle
B Grape (@Grab)

B Griffon plugin
B Grails plugin Nars



" A
Roadmap

2 2 2
A=’ ’

® Map/Reduce, Fork/Join

B Dataflow enhancements

® AP| evolution

B Actor and DataFlow remoting

m CSP?, STM?, ActiveObjects?
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Summary

Tasty concurrency menu

Actors, Collections, Dataflow, Safe, ...

Enjoyable parallelism

Wors



Questions?

Wors
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