Nars

Groovy Parallel Systems
Vaclav Pech

" I
About me

B Passionate programmer
B Concurrency enthusiast

7 Nars
B GPars @ Codehaus lead s

B Technology evangelist @ JetBrains

B JetBrains Academy member

http://www.jroller.com/vaclav
http://twitter.com/vaclav_pech

Wors

http://www.jroller.com/vaclav
http://twitter.com/vaclav_pech

" S
GPars

Apache 2 license

Hosted @ Codehaus

S5 commiters

Tight relation with the Groovy team

Originally named GParallelizer

Wors

" SN
Pantha rei

Entering a new era!

Wors

Q"

We're quad core already

Beware: More cores to come shortly!
NDars

Stone age of parallel SW

B Dead-locks

B | jve-locks

B Race conditions
B Starvation

B Shared Mutable State

Wors

"
Locks and threads

Multithreaded programs today work mostly
by accident!

Wors

Toolset

Fork/Join

Actors Collections

Nars

Q"

Parallelizer
{
images. {it.contains me}
{convert it}
{it.size()}
h
B |mportant:

Side-effect-free functions only!

Wors

" S
Transparently parallel

{
images.
{it.contains me}
{convert it}

{it.size()}

Wors

" S
Parallelize existing code

buyBargain stocks.

—
- N -~ NS Na- ~="

def buyBargain(stocks) {
buy stocks. {
it.download().price < 50

J

}
Use with CAUTION!

Wors

e
Functional flavor

Map / Reduce

map, reduce, filter, min, max, sum, ...

(1..n). filter {it%2==0}
.map {it ** 2}
reduce {a, b -> a + b}

Wors

" S
Call closures asynchronously

def isSelfPortrait = {image -> image.contains me}
def flag = isSelfPortrait.call(img1)

def future = isSelfPortrait. (img1)

def flag = future.get()

Wors

"
Asynchronous closures

def = {img -> img.resize(64, 64)}
def = resize.
def resized = images.collect

createAlbum resized*.get()

Wors

"
Fork/Join Orchestration

protected void compute() {
long count = 0;
file.eachFile {
if (it.isDirectory()) {
println "Forking a thread for $it"

| (new FileCounter(it)) Waits for children
}ecieu;'-] " without blocking the
} thread!
}
(count + (?.sum() ?: 0))
}

Wors

" S
GroovyDSL — Intellid IDEA CE

I intellijIDEA

Parallelizer.dolarallel |
images.collectParallel {it.tolbGrayicale()!
1f (images.anyFParallel {it.zize() > Mix IMG: 5IZE}) rejectImages()
def fanilvInagez = ilmages.findall

} o - findall (Closure closure) Collection<T>-
m| T findillParallel (Closure closure] Object

Wors

" J———
Dataflow Concurrency

B No race-conditions

B No live-locks

B Deterministic deadlocks
Completely deterministic programs

BEAUTIFUL code

(Jonas Bonér)

WNors
P nd o\ 9N

"
Dataflow Variables

task { z << x.val + y.val }
task { x << 40 }
task {y << 2}

assert 42 == z.val

B Single-assignment variables

with blocking read
Nars

DataFlows

def df = new ()
task { di.z=df.x + di.y }
task { df.x =10}

task { df.y =5}

assert 15 ==df.z

Wors

"
DataFlows Making Money

def stocks = [[AAPL', 'GOOG', 'IBM', 'JAVA']

wt s 4

def = new DataFlows()

o “efle
o
efeo,

stocks.each({stock ->
[stock] = getClosing(stock, 2009)

}-async())

def topStock = stocks.max { [it] } Wors

" A
Dataflow Operators

operator(inputs: [stocksStream],
outputs: [pricedStocks])
{ >
def = getClosing(, 2008)
bindOutput(0, [stock: , price: 1)

[

Lt

[

Lt
[
Lt
[
Lt
»
»

[

Lt

[

Lt

[

Lt

Wors

'_
Actors

B |solated
B Communicating
“'Immutable messages
B Active
IPooled shared threads
B Activities
“ICreate a new actor

-1Send a message Thread pool
-'Receive a message

Wors

Q"

Actors use

HTTP

Form

Response

Q"

"
Actors patterns

B I

Enricher
Router
Translator
Endpoint
Splitter
Agregator
Filter
Resequencer
Checker
NDors

Q"

" JE—
Creating Actors

class MyActor extends {
void {
def buddy = YourActor()
buddy ‘Hi man, how\'re things?’
def response = ()

Wors

"
Creating Actors

def decryptor = actor {
loop {
react {msg ->
reply msg.reverse()

;
}
}

decryptor << ‘noitcA nl yvoorG’

Wors

"
Sending messages

buddy.send 10.eur

buddy << new Book(title:' Groovy Recipes’,
author: Scott Davis’)

def canChat = buddy.sendAnd\Wait ‘Got time™?”’

buddy.sendAndContinue ‘Need money!’, {cash->
pocket.add cash

)
Wors

" EE————
Reacting to messages

react {gift1 ->
reply "Thank you for $gift1”
react {gift2 ->
reply "Wow, one more $gift2”

[gift1, gift2].max{it.price}.reply
‘Will you marry me”?”’

J

/INever reached

)
Wors

Q"

" S
Choosing the Reaction

{gift ->
switch (gift) {

case Money: ;pocket gift; break
case [iPhone, iPod]:child << gift; break
case (BigFlat..SmallHouse):moveln(gift); break
case Clothes:

putOn(gift)

fits(gift)?reply ; gift

break
case EXIT:

Wors

"
Continuation Style

loop {
react {
react {

}

/INever reached

}

/INever reached

}

/INever reached o, s

Q"

"
Dynamic Dispatch Actor

def actor = new ({
{BigDecimal num ->
printin }
{String code ->
compileAndRun code }
{Book book ->
read book }

Wors

" SN
Safe (Agent)

B | ock Shared Mutable State in a Safe

Q"

Safe inside @

Message Queue

Nars

Q"

Safe List

def jugMembers = new Safe() //add Me

task {
jugMembers.send //add Joe
}
task {
jugMembers << /ladd Dave
jugMembers << /ladd Alice
}

printin jugMembers.

Wors

" S
Integration

B Bundled with Groovy dists

B \aven
B Gradle
B Grape (@Grab)

B Griffon plugin
B Grails plugin Nars

" A
Roadmap

2 2 2
A=’ ’

® Map/Reduce, Fork/Join

B Dataflow enhancements

® AP| evolution

B Actor and DataFlow remoting

m CSP?, STM?, ActiveObjects?

Wors

" S
Summary

Tasty concurrency menu

Actors, Collections, Dataflow, Safe, ...

Enjoyable parallelism

Wors

Questions?

Wors

Q"

	GPars
	About me
	Slide 3
	Pantha rei
	We’re quad core already
	Stone age of parallel SW
	Locks and threads
	Slide 8
	Parallelizer
	Transparently parallel
	Parallelize existing code
	Functional flavor
	Call closures asynchronously
	Asynchronous closures
	Fork/Join Orchestration
	GroovyDSL – IntelliJ IDEA CE
	Dataflow Concurrency
	Dataflow Variables
	DataFlows
	DataFlows Making Money
	Dataflow Operators
	Actors
	Actors use
	Actors patterns
	Creating Actors
	Slide 26
	Sending messages
	Reacting to messages
	Choosing the Reaction
	Continuation Style
	Dynamic Dispatch Actor
	Safe (Agent)
	Safe inside
	Safe List
	Integration
	Roadmap
	Summary
	Questions?

