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A JVM Does That???

● Been a JVM Engineer for over a decade
● I'm still amazed at what goes in a JVM
● Services have increased over time
● Many new services painfully "volunteered" 

by naive change in specs



  

Some JVM Services

● High Quality GC
● Parallel, Concurrent, Collection
● Low total allocation cost

● High Quality Machine Code Generation
● Two JITs, JIT'd Code Management, Profiling
● Bytecode cost model

● Uniform Threading & Memory Model
● Locks (synchronization), volatile, wait, notify

● Type Safety



  

Some JVM Services

● Dynamic Code Loading
● Class loading, Deoptimization, re-JIT'ing

● Quick high-quality Time Access
● System.currentTimeMillis

● Internal introspection services
● Reflection, JNI, JVMTI, JVMDI/JVMPI, Agents

● Access to huge pre-built library
● Access to OS

● threads, scheduling, priorities, native code



  

Too Many Services?

● Where did all this come from?
● Mostly incrementally added over time
● The Language, JVM, & Hardware all co-evolved

● e.g. incremental addition of finalizers, JMM, 64-bits
● Support for high core-count machines

● Because Illusions Are Powerful Abstractions

Why Did We Add All These Services?



  

The 'V' in JVM

● "Virtual" – Its a Great Abstraction
● Programmers focus on value-add elsewhere
● JVM Provides Services
● The selection of Services is ad-hoc

● Grown over time as needed
● Some services are unique to Java or the JVM
● Many services overlap with existing OS services

– But sometimes have different requirements



  

Agenda

● Introduction (just did that)
● Illusions We Have
● Illusions We Think We Have or Wish We Had
● Sorting Our Illusions Out



  

Illusion: Infinite Memory

● Garbage Collection – The Infinite Heap Illusion
● Just allocate memory via 'new'
● Do not track lifetime, do not 'free'
● GC figures out What's Alive and What's Dead

● Vastly easier to use than malloc/free
● Fewer bugs, quicker time-to-market

● Enables certain kinds of concurrent algorithms
● Just too hard to track liveness otherwise



  

Illusion: Infinite Memory

● GC have made huge strides in the last decade
● Production-ready robust, parallel, concurrent
● Still major user pain-point

– Too many tuning flags, GC pauses, etc
● Major Vendor point of differentiation, active dev
● Throughput varies by maybe 30%
● Pause-times vary over 6 orders of magnitude

– (Azul GPGC: 100's of Gig's w/10msec)
– (Stock full GC pause: 10's of Gig's w/10sec)
– (IBM Metronome: 100's Megs w/10microsec)



  

Illusion: Bytecodes Are Fast

● Class files are a lousy way to describe programs
● There are better ways to describe semantics 

than Java bytecodes
● But we're stuck with them for now
● Main win: hides CPU details

● Programmers rely on them being "fast"
● It's a big Illusion: Interpretation is slow
● JIT'ing brings back the "expected" cost model



  

Illusion: Bytecodes Are Fast

● JVMs eventually JIT bytecodes
● To make them fast!
● Some JITs are high quality optimizing compilers 

– Amazingly complex beasties in their own rights
● i.e. JVMs bring "gcc -O2" to the masses

● But cannot use "gcc"-style compilers directly:
● Tracking OOPs (ptrs) for GC
● Java Memory Model (volatile reordering & fences)
● New code patterns to optimize



  

Illusion: Bytecodes Are Fast

● JIT'ing requires Profiling
● Because you don't want to JIT everything

● Profiling allows focused code-gen
● Profiling allows better code-gen

● Inline whats hot
● Loop unrolling, range-check elimination, etc
● Branch prediction, spill-code-gen, scheduling

● JVMs bring Profiled code to the masses!



  

Illusion: virtual calls are fast

● C++ avoids virtual calls – because they are slow
● Java embraces them – and makes them fast

● Well, mostly fast – JIT's do Class Hierarchy Analysis
● CHA turns most virtual calls into static calls
● JVM detects new classes loaded, adjusts CHA

– May need to re-JIT
● When CHA fails to make the call static, inline caches
● When IC's fail, virtual calls are back to being slow



  

Illusion: 
Partial Programs Are Fast

● JVMs allow late class loading, name binding
● i.e. classForName

● Partial programs are as fast as whole programs
● Adding new parts in (e.g. Class loading) is "cheap"
● May require: deoptimization, re-profiling, re-JIT
● Deoptimzation is a hard problem also



  

Illusion: 
Consistent Memory Models

● ALL machines have different memory models
● The rules on visibility vary widely from machines
● And even within generations of the same machine
● X86 is very conservative, so is Sparc
● Power, MIPS less so
● IA64 & Azul very aggressive

● Program semantics depend on the JMM
● So must match the JMM
● Else program meaning would depend on hardware!



  

Illusion: 
Consistent Memory Models

● Very different hardware memory models
● None match the Java Memory Model
● The JVM bridges the gap - 

● While keeping normal loads & stores fast
● Via combinations of fences, code scheduling, 

placement of locks & CAS ops
● Requires close cooperation from the JITs
● Requires detailed hardware knowledge



  

Illusion: 
Consistent Thread Models

● Very different OS thread models
● Linux, Solaris, AIX
● But also cell phones, iPad, etc

● Java just does 'new Thread'
● On micro devices to 1000-cpu giant machines
● and synchronized, wait, notify, join, etc, all just work



  

Illusion: Locks are Fast

● Contended locks obviously block and
 must involve the OS
● (Expect fairness from the OS)

● Uncontended locks are a dozen nano's or so
● Biased locking: ~2-4 clocks (when it works)
● Very fast user-mode locks otherwise

● Highly optimized because synchronized is so 
common



  

Illusion: Locks are Fast

● People don't know how to program concurrently
● The 'just add locks until it works' mentality
● i.e. Lowest-common-denominator programming
● So locks became common
● So JVMs optimized them

● This enabled a particular concurrent 
programming style

● And we, as an industry, learned alot about 
concurrent programming as a result



  

Illusion: Quick Time Access

● System.currentTimeMillis
● Called billions of times/sec in some benchmarks
● Fairly common in all large java apps
● Real Java programs expect that: 

if   T1's Sys.cTM  <  T2's Sys.cTM
then   T1  <<<happens_before T2

● But cannot use, e.g. X86's "tsc" register
● Value not coherent across CPUs
● Not consistent, e.g. slow ticking in low-power mode
● Monotonic per CPU – but not per-thread



  

Illusion: Quick Time Access

● System.currentTimeMillis
● Switching from fastest linux gettimeofday call

– (mostly-user-mode atomic time struct read)
– gettimeofday gives quality time

● To a plain load (updated by background thread)
● Was worth 10% speed boost on key benchmark

● Hypervisors like to "idealize" tsc :
● Means: uniform monotonic ticking
● Means: slows access to tsc by 100x?



  

Agenda

● Introduction (just did that)
● Illusions We Have
● Illusions We Think We Have or Wish We Had
● Sorting Our Illusions Out



  

Illusions We'd Like To Have

● Infinite Stack
● e.g. Tail calls.  Useful in some functional languages

● Running-code-is-data
● e.g. Closures

● 'Integer' is as cheap as 'int'
● e.g. Auto-boxing optimizations

● 'BigInteger' is as cheap as 'int'
● e.g. Tagged integer math, silent overflow to infinite 

precision integers



  

Illusions We'd Like To Have

● Atomic Multi-Address Update
● e.g. Software Transactional Memory

● Fast alternative call bindings
● e.g. invokedynamic



  

Illusions We Think We Have

● This mass of code is maintainable:
● HotSpot is approaching 15yrs old
● Large chunks of code are fragile

– (or very 'fluffy' per line of code)
● Very slow new-feature rate-of-change 

● Azul Systems has been busy rewriting lots of it
● Many major subsystems are simpler, faster, lighter
● >100K diffs from OpenJDK



  

Illusions We Think We Have

● Thread priorities
● Mostly none on Linux without root permission
● But also relative to entire machine, not JVM
● Means a low-priority JVM with high priority threads

– e.g. Concurrent GC threads trying to keep up
● ...can starve a medium-priority JVM

● Write-once-run-anywhere
● Scale matters: programs for very small or very large 

machines are different



  

Illusions We Think We Have

● Finalizers are Useful
● They suck for reclaiming OS resources

– Because no timeliness guarantees
– Code "eventually" runs, but might be never
– e.g. Tomcat requires a out-of-file-handles situation trigger a 

FullGC to reclaim finalizers to recycle OS file handles
● What other out-of-OS resources situations 

need to trigger a GC?
● Do we really want to code our programs this way?



  

Illusions We Think We Have

● Soft, Phantom Refs are Useful
● Again using GC to manage a user resource
● e.g. Use GC to manage Caches

● Low memory causes 
rapid GC cycles causes 
soft refs to flush causes 
caches to empty causes 
more cache misses causes 
more application work causes 
more allocation causes
rapid GC cycles
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● Introduction (just did that)
● Illusions We Have
● Illusions We Think We Have or Wish We Had
● Sorting Our Illusions Out



  

Services Summary

● Services provided by JVM
● GC, JIT'ing, JMM, thread management, fast time
● Hiding CPU details & hardware memory model

● Services provided below the JVM (OS)
● Threads, context switching, priorities, I/O, files, 

virtual memory protection, 
● Services provided above the JVM (App)

● Threadpools & worklists, transactions, cypto, 
caching, models of concurrent programming

● Alt languages: new dispatch, big ints, alt conc



  

Move to OS:
Fast Quality Time

● JVM provides fast quality time
● Fast not quality from X86 'tsc'
● Quality not fast from OS gettimeofday

● This should be an OS service
● Tick memory word 1000/sec

– Update with kernel thread or timer
● Read-only process-shared page
● This CTM is a coherent across CPUs 

on a clock-cycle basis



  

Move to OS:
Thread Priorities

● OS provides thread priorities at the process level
● Higher priority JVMs can/should starve lower ones

● JVM also needs thread priorities within-process
● GC threads need cycles before mutator threads

– Or else that concurrent GC will won't be concurrent
– And the mutator will block for a GC cycle

● JIT threads need cycles
– Or else the 1000-runnable threads will starve the JIT
– And the program will always run interpreted



  

Move to OS:
Thread Priorities

● Right now Azul is faking thread priorities
● With duty-cycle style locks & blocks
● Required for a low-pause concurrent collector

● Per-process Thread Priorities belong in the OS
● OS already does process priorities & 

context switches
● Also, cannot raise thread priorities without 'root'
● Lowering mutator priorities changes behavior

wrt non-Java processes



  

Keep Above JVM:
Alternative Concurrency

● JVM provides thread management, fast locks
● Many new langs have new concurrency ideas

● Actors, Msg-passing, STM, Fork/Join are a few
● JVM too big, too slow to move fast here
● Should experiment 'above' the JVM
● ...at least until we get some concensus on 

The Right Way To Do Concurrency
● Then JVM maybe provides building blocks

– e.g. park/unpark  or  a specific kind of STM



  

Move to JVM:
Fixnums

● Fixnums belong in the JVM, not language impl
● JVM provides 'int' & 'long'

● Many languages want 'ideal int'
● Obvious java translation to infinite math is inefficient

– Really want some kind of tagged integer
– Requires JIT support to be really efficient

● I think "64bits ought to be enough for anybody"
– You (app-level programmer) know if you might need more
– Don't make everybody else pay for it



  

Keep in JVM:
GC, JIT'ing, JMM, Type Safety

● JIT'ing (by itself) belongs above the OS and 
below the App – so in the JVM

● GC requires deep hooks into the JIT'ing process
● And also makes sense below the App

● The JMM requires deep hooks into the JIT also
● And again (mostly) makes sense below the App
● Some alternative concurrency models 

would expose weaker MMs to the App, 
would enable faster, cheaper hardware 
– but this is still going require close JIT cooperation



  

Move Above JVM:
OS Resource Lifetime

● Move outside-the-JVM resource lifetime control 
out of Finalizers
● Make the app do e.g. ref-counting or 'arenas' or 

other lifetime management
● Do not burden GC with knowledge that more of 

resource 'X' can be had running finalizers
● Move weak/soft/phantom refs to the App

● GC should not change application semantics
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JIT'ing & Code 
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JMM
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Thread Management
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Fast Time
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Management

Application
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Move To JVM (Azul):
Virtual / Physical Mappings

● Azul's GPGC does aggressive virtual-memory to 
physical-memory remappings
● Tbytes/sec remapping rates
● mmap() & friends too slow

● Need OS hacks to expose hardware TLB
● Still safe across processes
● But within process can totally screw self up



  

Move To JVM (Azul):
Hardware Perf Counters

● JVM is already doing profile-directed compilation
● Natural consumer of HW Perf Counters

● JVM can map perf counters to bytecodes
● JIT's code, manages JIT'd code
● "hotcode" mapped back to user's bytecodes

● Want quickest & thin-est way to expose HW perf 
counters to JVM
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There's Work To Do

(full employment contract  for JVM engineers)

PS: Azul is hiring compiler & runtime engineers 
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