
@EvaAndreasson

Sr Product Manager, Cloudera



©2011 Cloudera, Inc. All Rights 
Reserved. 2

10,000

2005 20152010

5,000

0

1.8 trillion gigabytes of data was
created in 2011…

� More than 90% is unstructured data

� Approx. 500 quadrillion files

� Quantity doubles every 2 years

STRUCTURED DATA UNSTRUCTURED DATA

G
IG
A
B
Y
T
E
S
 O
F
 D
A
T
A
 C
R
E
A
T
E
D
 (
IN
 B
IL
L
IO
N
S
)

Source: IDC 2011



� Simple Definition:
Data that exceeds processing capacity of conventional 
data management systems. 

The data is either too big, expands too fast, or doesn't 
easily fit the structures of current data models.

� Large industry leaders (and smart startups!) 
currently looking to find ways to:

Cost-efficiently make ALL your data work for you -
enable better decisions and create new business growth! 

10x = 10x



� “Return On Bytes”
◦ How to cost efficiently query, manage, and 
store 100s TB or PB of data?

� Pre-mature data death
◦ Off-disk and archived data
difficult and costly to access



� Enough time to process raw data before you 
need it
◦ Data ingest from sensors, cameras, feeds, 
streaming, logs, user interactions…

◦ Raw data structuring for 
various ETL and DB models



� Costly adaption to new data types
◦ Saving account info, images, videos, url clicks, logs, 
and transactional data – together?

� Inflexible data models
◦ Major surgery for future queries

� Most data is modeled for questions we know will be 
asked…

� Raw data value loss



� A cost-effective, highly scalable, and flexible 
data processing framework
◦ Distributed storage over cheap commodity servers

◦ Linear distributed scale, bring processing closer to 
the data

◦ Ability to manage and analyze unstructured data



� An integrated data storage and computation 
framework
◦ Distributed over cheap commodity servers

◦ Linear scale, bringing processing closer to data

◦ Ability to manage and analyze unstructured data



� HDFS - Hadoop Distributed File System
◦ Splits data into equally sized blocks of bytes

◦ Replicated across many machines

� Enables
• Parallelism

• Balanced execution time

• Robustness



� Distributed data processing framework
◦ Process data where it’s stored - without schema!

� Three phased algorithm
◦ Map
� Find relevant data by key mapping
� Gather the value of that data
� Create output <key, value> pair file

◦ Shuffle
� Sort the <key, value> pair file
� Get all the <key, value> pairs (or ranges thereof) to a reducer

◦ Reduce
� For all <key, value> pairs for a certain key, process all of the 
values

� Final Output
� A sorted <key, processed value> pair file



� Word count is challenging over massive amounts of 
data
◦ Single compute node too time-consuming
◦ Distributed nodes require moving data
◦ Number of unique words can easily exceed the RAM
◦ Would need a hash table on disk
◦ Would need to partition the results (sort and shuffle)

� Fundamentals of statistics often are simple 
aggregate functions
◦ Most aggregation functions have distributive nature, e.g., 
max, min, sum, count

� MapReduce breaks complex tasks down into 
smaller elements which can be executed in parallel



� Count words across multiple files

� For simplicity, assume each file’s content 
ends up in a separate split

$ cat file01 

Hello World Bye World

$ cat file02 

Hello Hadoop Goodbye Hadoop



[imports…]

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable, 
Text, Text, IntWritable> { 

private final static IntWritable one = new IntWritable(1); 
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> 
output, Reporter reporter) throws IOException { 

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);

}}}…..



[imports…]

public class WordCount {

public static class Map extends MapReduceBase implements Mapper<LongWritable, 
Text, Text, IntWritable> { 

private final static IntWritable one = new IntWritable(1); 
private Text word = new Text();

public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> 
output, Reporter reporter) throws IOException { 

String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);

}}}…..

Map(input_key, input_value)
foreach word w in input_value:

emit(w, 1)



� Map task 1 emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

� Map task 2 emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>



…
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, 
IntWritable> { 

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> 
output, Reporter reporter) throws IOException { 

int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}}

public static void main(String[] args) throws Exception { 
JobConf conf = new JobConf(WordCount.class); 
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);

}}



…
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, 
IntWritable> { 

public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> 
output, Reporter reporter) throws IOException { 

int sum = 0;
while (values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}}

public static void main(String[] args) throws Exception { 
JobConf conf = new JobConf(WordCount.class); 
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);

}}

reduce(output_key, intermediate_vals)
set count = 0
foreach v in intermediate_vals:

count += v
emit(output_key, count)



� Map task 1 emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

� Map task 2 emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

� Reducer emits:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>



©2011 Cloudera, Inc. All Rights 
Reserved.



� Data processing
◦ Magnitudes faster file parsing
◦ How many trades over the last 24 months finished within 5 seconds
◦ What users have been less active this month

� Data analytics and Pattern matching / Machine learning
◦ Match chemical compounds against huge research data to find dangerous 
combinations of multiple medicines 

◦ Pattern detection over huge data sets to find previously identified “unrelated events” 
that with enough input can be identified as malicious

◦ Compared to my neighborhood, how much power is a specific user using
◦ Based on real time images, analyzing best rescue paths in hazard zones
◦ Based on real time images, analyze what days how many cars were parked outside a 
certain store

� Personalization, user experience optimization
◦ Replicate successful sales experiences, optimize based on patterns
◦ What items are most popular during what time of the day?
◦ More optimized recommendations and ad-placement

� Phone home
◦ Predict when HW components and mechanic components will need to be replaced, 
improve customer service

� ….and many more!!!!



� Learn
◦ Videos, books, training: http://university.cloudera.com/
◦ Blog: http://www.cloudera.com/blog/

� Download’n’play
◦ www.cloudera.com/download

� Expertise input
◦ Join cdh-user@cloudera.org

� Contribute to the community 
◦ hadoop.apache.org

� Contact me: 
◦ @EvaAndreasson
◦ eva@cloudera.com





� 1) Command line view – how to start Hadoop

� 2) Visual example of MapReduce

� 3) Combiner example

� 4) More than just a framework



//Run the word count application:

$ bin/hadoop jar /usr/joe/wordcount.jar 
org.myorg.WordCount /usr/joe/wordcount/input 
/usr/joe/wordcount/output 

//Results:

$ bin/hadoop dfs -cat /usr/joe/wordcount/output/part-
00000 

Bye 1

Goodbye 1

Hadoop 2

Hello 2

World 2





� Map task 1 emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>

� Map task 2 emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

� Combiner 1 emits:
< Bye, 1>
< Hello, 1>
< World, 2>

� Combiner 2 emits:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

� Reducer emits:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>



� Hadoop includes many sub-projects:
◦ Column oriented database (Hbase)

◦ Workflow scheduling (Oozie)

◦ Import/export of data (Flume, Sqoop)

◦ Task creation and tracking (Hue)

◦ SQL interfaces (Hive, Pig)

◦ Service and configuration management (Zookeeper)

◦ Extra functionality (Whirr, Mahout, Avro)





2004-2011





Enterprise Content Trends: smart content and big 
dataContent Geeks
www.contentgeeks.net/2011/10/16/enterprise-
content-trends-2/Cached
You +1'd this publicly. Undo
Oct 16, 2011 – Two main trends in Enterprise Content 
Management: Content is getting smarter & bigger!


