Mythbusters

Security means different things to different people '
Closed source more secure than open source )
Security could be achieved by obscurity
Software-only security is good [enough]

Security folks are pain in the neck

Security is a set of components

Can protect against all attacks

Encryption equals security

Can add security later on

Hackers are clueless

Jfokus, Stockholm, 02/15/2012



Stockholm Waterfront
Congress Center
February 13-15 2012

“Veni ad Android sepeliendum, non ad laudandum” -Bill ShakesP2P

<A NVIDIA.




Hadi’s ego slide

Security, Cryptography, Complex System Analysis ID Management,
Asset Protection, Information Assurance Schemes

NVvVIDL/

Massively Scalable Systems design, implementation, and governance,
Vulnerability Assessment, Threat Analysis (VATA)

Theory of Programming Languages, Formal Languages,
Functional Languages, Semantics of Security

Enterprise & Embedded (Netscape, Sun Microsystems,
United States Government, Motorola, eBay, PayPal, NVIDIA...)

® Author of “Web Commerce Security: Design and Development” book,
published by John Wiley & Sons

Jfokus, Stockholm, 02/15/2012



Agenda ey

NVIDI/
Security

Android Security

Case Studies

Conclusion

Jfokus, Stockholm, 02/15/2012



Agenda N>

NVIDL

Security

Jfokus, Stockholm, 02/15/2012



Security is not rocket-surgery e

NVvVIDL/

Security is defined by two things
Assets: what you protect
Threats: what to protect against

Without assets and threats, security is meaningless

Security is a subset of QA/verification
“exclusive specification verification” definition

Security is hard to measure (very hard)
State-space combinatorial explosion: cannot enumerate all attacks
The secure state of a complex system is “practically” undefinable

Jfokus, Stockholm, 02/15/2012



HW vs. SW: does it matter? =

NVIDL

A SW-only security solution is prone to system-attacks
Well, almost always

HW is a good base to address system-wide attacks
Well, most of the time

In either case, common principles apply
Authentication: strong, mutual, verifiable, “frequent”
Authorization: mandatory, abstracted, enforced, chained
Public vs. private key material (both should be tamper-proof)

Two requirements to satisfy

ROT
COoT

Jfokus, Stockholm, 02/15/2012



Root Of Trust (ROT) <3

NVIDL

Root of trust is the lowest verified-entity in a [security] call stack

* It relies on verification of identity
Difference between Identification & authentication

Root of trust could be in software or hardware
* Where else?

Jfokus, Stockholm, 02/15/2012



Chain Of Trust (COT) ——

n\lIDIA
* It’s not sufficient to have a solid ROT
* Multiple system entities participate in actions
* Passing control from one entity to another: attack entry

Jfokus, Stockholm, 02/15/2012



Cryptography: is it, like, photography?? ,f,%

* No, it’s not (just in case you were wondering)
* Although steganography is close to both

* The mathematical systems for securing

* Communication or DIT (data in transit)
» Storage or DAR (data at rest)

* Getting the cryptography right is hard. Really, really hard
* The Kirchhoff’s principle

* Cryptography is the easiest part of securing your system

Jfokus, Stockholm, 02/15/2012



Ring_0: got TEE? <3

e ——

NVIDL

CS101: a modern OS usually has four rings

Rings are logical representation of access control (got Authorization?)
Ring_0 entities have the highest system privileges

A modern OS is a very complex spaghetti of modules,
components, devices, subsystems, etc.

Even “defining the security of such a mess brings tears to
grown-up eyes

Let alone implementing, proving, and verifying it...

Jfokus, Stockholm, 02/15/2012



: _ , <X
Ring 0: got TEE? (cont’d) )

There are two ways to address the problem of complex call

stack (from security POV)

Verify every single call and execution path to trusted process/app (the
classical “CIA agent in Moscow” problem)

Implement what’s called “secure isolation”
Separation/segregation vs. secure isolation
TEE (trusted execution environment) and TCB (trusted
computing base)
* Both HW & SW flavors exist
TEE implementations have a S/W stack to support H/W

The stack is either a hypervisor, a monitor, or a microkernel
[almost] all implementations exist

Jfokus, Stockholm, 02/15/2012



Hypervisor

NVIDL

We use Hypervisor equivalent to VMM
Virtual machine manager
Virtual machine monitor
virtual machine(s), monitor, guest OS’s: two types
LT Ryl
oo
WARE
Type | Type |l
(native/bare metal) Hosted (picture courtesy Wikipedia)

Jfokus, Stockholm, 02/15/2012



uKernel <A

NVIDL/

As opposed to monolithic
* It’s just that: a minimum kernel of an OS
* That is, minimize the crap (technical term) in the Ring 0

Push everything northbound to user space

Why is it a good idea from security POV?
Monolithic kernel MKernel
Hardware Hardware (picture courtesy Wikipedia)

Jfokus, Stockholm, 02/15/2012



<X
NVIDI/

Typical TEE Implementation (TrustZone)

* It’s a combo approach

NormalWorld ! Secure World

E Normal World & Secure World
: User Mode : 1 User Mode
‘| NormalWorld : l Secure World
Privileged Modes | | Privileged Modes
Monitor Mode

(picture courtesy ARM)

Jfokus, Stockholm, 02/15/2012




Agenda N>

NVIDL

Android Security

Jfokus, Stockholm, 02/15/2012



Android: what is it? AVIDL

Linux-based software stack for “mobile” devices

Very divergent from typical Linux

Almost everything above the kernel is different
Dalvik VM, application frameworks
bionic C lib, system daemons
init, ueventd

Heck: even the kernel is different
Unique subsystems/drivers: Binder, Ashmem, ...

Hardcoded security checks

Jfokus, Stockholm, 02/15/2012



Binder & Ashmem <X

NVIDL

Android-specific mechanisms for IPC and shared memory
Binder

Primary IPC mechanism
Inspired by BeOS/Palm OpenBinder
Ashmem

Shared memory mechanism

Designed to overcome limitations of existing shared memory
mechanisms in Linux (debatable)

Jfokus, Stockholm, 02/15/2012



Android Security Model .

NVIDL

Application-level permissions model
Controls access to app components
Controls access to system resources
Specified by app writers and seen by users

Kernel-level sandboxing and isolation
Isolate apps from each other and the system
Prevent bypass of application-level controls
Relies on Linux DAC (discretionary access control)
Normally invisible to the users and app writers

Jfokus, Stockholm, 02/15/2012



Discretionary Access Control (DAC) <3

NVvVIDL/

» Typical form of access control in Linux
» Data-access entirely at the discretion of owner/creator of data

* Some processes (e.g. uid 0) can override and some objects (e.g.
sockets) are unchecked

* Based on user & group identity
* Limited granularity, course-grained privilege

Jfokus, Stockholm, 02/15/2012



Android and DAC —

NVIDL

Restrict use of system facilities by apps
e.g. Bluetooth, network, storage access
Requires kernel modifications, “special” group IDs

Isolate apps from each other
Unique user and group ID per installed app
Assigned to app processes and files

Hardcoded, scattered policy

Jfokus, Stockholm, 02/15/2012



Agenda N>

NVIDL

Case Studies

Jfokus, Stockholm, 02/15/2012



Case study: vold =

NVIDL

vold - Android volume daemon
Runs as root
Manages mounting of disk volumes
Receives netlink messages from the kernel

CVE-2011-1823

Does not verify that message came from kernel
Uses signed int from message as array index without checking for <0

Demonstrated by the Gingerbreak exploit

Jfokus, Stockholm, 02/15/2012



GingerBreak: Overview ——

NVIDL

Collect information needed for exploitation
Identify the vold process
Identify addresses and values of interest

Send carefully-crafted netlink message to vold
Trigger execution of exploit binary
Create a setuid-root shell

Execute setuid-root shell
Got root?? Your @$$ is Own3d (technical term)

Jfokus, Stockholm, 02/15/2012



GingerBreak: Collecting Information -

NVvVIDL/

Identify the vold process
Iproc/net/netlink to find netlink socket users
/proc/pid/cmdline to find vold PID

Identify addresses and values of interest
Isystem/bin/vold to obtain GOT address range
Isysteml/lib/libc.so to find “system” address
letc/vold.fstab to find valid device name
logcat to obtain fault address in vold

Jfokus, Stockholm, 02/15/2012



Case study: ueventd 2

NVIDL

ueventd - Android udev equivalent
Runs as root
Manages /dev directory
Receives netlink messages from the kernel

Same vulnerability as CVE-2009-1185 for udev

Does not verify message came from kernel

Demonstrated by the Exploid exploit

Jfokus, Stockholm, 02/15/2012



Case study: adbd el

NVIDL

* adbd - Android debug bridge daemon
Runs as root
Provides debug interface
» Switches to shell UID and executes shell

* Does not check/handle setuid() failure
Can lead to a shell running as root

* Demonstrated by RageAgainstTheCage

Jfokus, Stockholm, 02/15/2012



RageAgainstTheCage: Overview ,f,%

* Look up adbd process in /proc
* Fork self repeatedly to reach RLIMIT_NPROC for shell identity

* Re-start adbd

* adbd setuid() call fails
* shell runs as root

Jfokus, Stockholm, 02/15/2012



Case study: zygote =l

NVIDL

zygote - Android app spawner
Runs as root
Receives requests to spawn apps over a socket
Uses setuid() to switch to app UID

Does not check/handle setuid() failure
Can lead to app running as root

Demonstrated by Zimperlich exploit

Jfokus, Stockholm, 02/15/2012



Zimperlich: overview NVIDL,

Fork self repeatedly to reach RLIMIT_NPROC for app UID
* Spawn app component via zygote

» Zygote setuid() call fails
* App runs with root UID

Re-mounts /system read-write
Creates setuid-root shell in /system

Jfokus, Stockholm, 02/15/2012



Case study: ashmem <3

NVIDL

ashmem - anonymous shared memory
Android-specific kernel subsystem
Used by init to implement shared mapping for system property space

CVE-2011-1149

Does not restrict changes to memory protections
Actually two separate vulnerabilities in ashmem

Demonstrated by KillingihnTheNameOf and psneuter exploits

Jfokus, Stockholm, 02/15/2012



<A
NVIDL/

KillingiInTheNameOf: Overview

* Change protections of system property space to allow writing
* Modify ro.secure property value

* Re-start adbd

* Root shell via adb

Jfokus, Stockholm, 02/15/2012



psnheuter: Overview =2

NVIDL/
» Set protection mask to 0 (no access) on property space
* Re-start adbd
* adbd cannot read property space
» Defaults to non-secure operation
* Root shell via adb

Jfokus, Stockholm, 02/15/2012



Agenda N>

NVIDL

Conclusion

Jfokus, Stockholm, 02/15/2012




Conclusion ViDL

* Need more case studies?? | mean, REALLY??7?

* Android is far from secure: Q.E.D

* So far we're only dealing with the kernel level access controls

* To fully control the apps, need application-layer access controls
* Requires further study of the existing Android security model

* Requires instrumentation of the application frameworks
* SE Android is a step in right direction

* To protect against system attacks Android should also be
bolted to hardware security (e.g. TEE impl.s such as TrustZone)

Jfokus, Stockholm, 02/15/2012



Thank you!

NVvVIDL/

Q A

Rates chart
« Answers: $1
« Correct answers: $3
« Correct answers requiring thought: $5

Jfokus, Stockholm, 02/15/2012




