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What is Caching?
Temporary Storage of data or results that are likely to be 
used more than once
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Caching Characteristics
• Fastest To Implement
• Offload
• Performance
• Scale up
• Scale out (Distributed Caches Only)
• Buffer against load variability
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Maximising Cache Efficiency

cache efficiency = cache hits / total hits

➡ High efficiency = high offload
➡ High efficiency = high performance
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Network Topology Example: Ehcache
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Compared to NoSQL
• NoSQL focused on persistence - Caching on temporary 
Storage

• NoSQL focused on BigData - Caching on valuable data
• Caching focused on RAM storage
• Caches are key-value stores, like key-value NoSQL
• Caching is a use case for NoSQL
• Much Lower latencies

10

Wednesday, 15 February 2012



10 

•! 95/5 Read/update 

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be 
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs. 
HBase does well also, although read time is higher. 
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The code is available publicly on GitHub: https://github.com/brianfrankcooper/YCSB

Comparative Speeds
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Compared	  with	  hybrid	  in-‐process	  and	  distributed	  
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Latency	  =	  L1	  speed	  *	  propor=on	  
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Compared to (Concurrent)Map

12

• a Map is an in-process key-value store

Even local in caches add:

- expiry
- eviction once full of least valuable entries

• Map is always store by reference
• Caches typically are distributed
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JSR107: Java Caching Standard
• javax.cache.Cache
• Being developed by JSR107
• Java 6 and above is required
• Included in JSR 342: Java EE 7 due end of 2012
• Immediately usable by Java EE 6 and Spring
• Immediately usable by any Java based app

13
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Open, Transparent Standards Approach
• Terracotta and Oracle have tasked an FTE (Greg and 
Yannis) with developing the spec

• Developed in the open
• 15 expert group members
• Lots of healthy debate. See the mailing list: 
jsr107@googlegroups.com

• Specification is standard spec license - free to use and 
implement

• Reference Implementation is Apache 2
• Tests which is the major part of the TCK is Apache 2

14
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Expected Implementations
• Terracotta - Ehcache
• Oracle - Coherence
• JBoss - Infinispan
• IBM - ExtemeScale
• SpringSource - Gemfire
• GridGain 
• TMax
• Google App Engine Java memcache client
• Spymemcache memcache client

15
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Getting Started
API in Maven Central
<dependency>
    <groupId>javax.cache</groupId>
    <artifactId>cache-api</artifactId>
    <version>0.3-SNAPSHOT</version>
</dependency>

Everything to get started
https://github.com/jsr107/jsr107spec

16
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Key Concepts
• CacheManager => Caches
• Cache => Entries 
• Entry => Key, Value
•  The basic API can be thought of map--like with the following 
additional features:

• atomic operations, similar to java.util.ConcurrentMap
• read-through caching
• write-through caching
• cache event listeners
• statistics

17
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API Features
Map-like with the following additional features:
• atomic operations, similar to java.util.ConcurrentMap
• read-through caching
• write-through caching
• cache event listeners
• statistics
• transactions including all isolation levels  
• caching annotations
• generics 

18
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How to Please Everyone - No Dependencies
• Java SE - no dependencies. 
• EE/Spring - provided dependencies - they are already there. 

19
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How to Please Everyone - Optional Features
Optional Features are:

• storeByReference
• XA and Local Transactions 
• Caching Interceptor Annotations e.g.

Options interrogation at runtime via Capabilities API:
• ServiceProvider.isSupported(OptionalFeature feature)
• CacheManager.isSupported(OptionalFeature feature) 

Works for implementers and Users
20
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Aimed at Standalone and Distributed Caching
Standalone Features

• storeByReference - allows speeds similar to CHM
• CacheEventListener callbacks - useful for triggering events
Distributed Features

• storeByValue
• NotificationScope in CacheEventListener
• modifications/differences to Map and ConcurrentHashMap to 
reduce network cost. e.g. 
- No values() and many others. 
- Calls may not return a value e.g. remove(Object key) 
returns boolean rather than the old value 21
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Not a Data Grid Specification
• Infinispan, Coherence and Extreme Scale are Data Grids
• Ehcache and Memcache are distributed client-server caches
• NoSQL key value stores are distributed client-server key 
stores which could be used for caching
So:

• JSR107 does not mandate a topology
• JSR347 does - it is for data grids and builds on JSR107

22
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Classloading
• Caches contain data shared by multiple threads/JVMs 
which may be using Java SE, EE, OSGi or custom class 
loading. 

• This makes class loading tricky
• A classloader can be specified when the CacheManager is 
created or a default is used. Either way all classes will be 
loaded by the CacheManager’s classloader, not the 
environment’s classloader.

• public static CacheManager getCacheManager(ClassLoader 
classLoader)

• public static CacheManager getCacheManager(ClassLoader 
classLoader, String name) 23
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Creating a CacheManager
ServiceLoader Creation
We support the Java 6 java.util.ServiceLoader creational approach. It will 
automaticaly detect a cache implementation in your classpath. You then create a 
CacheManager with:
CacheManager cacheManager = CacheManagerFactory.getCacheManager();
or more fully:
CacheManager cacheManager = CacheManagerFactory.getCacheManager(“app1”, 
Thread.currentThread().getContextClassLoader());

“new” Creation
CacheManager cacheManager = new RICacheManager(“app1”, 
Thread.currentThread().getContextClassLoader());

24
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Creating a Cache
To programmatically configure a cache named “testCache” 
which is set for read-through

CacheManager cacheManager = getCacheManager();
Cache testCache = cacheManager.createCacheBuilder(“testCache)
.setReadThrough(true).setSize(Size.UNLIMITED).
.setExpiry(Duration.ETERNAL).build();

25
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Using a Cache
You get caches from the CacheManager. To get a cache 
called “testCache”:

Cache<Integer, Date> cache = cacheManager.getCache(“testCache”);

26
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Putting a value in a Cache
Cache<Integer, Date> cache = cacheManager.getCache(cacheName);
Date value1 = new Date();
Integer key = 1;
cache.put(key, value1);

27
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Getting a Value
Cache<Integer, Date> cache = cacheManager.getCache(cacheName);
Date value2 = cache.get(key);

28
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Removing a mapping
Cache<Integer, Date> cache = cacheManager.getCache(cacheName);
Integer key = 1;
cache.remove(1);

29
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Exposing the underlying Cache’s API
Unwrap Method on Cache
    <T> T unwrap(java.lang.Class<T> cls);

Ehcache Example
net.sf.ehcache.Cache cache = 
javax.cache.cache.unwrap(net.sf.ehcache.Cache.class); 

30
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IDE API Review

31
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Annotations
JSR107 introduces a standardised set of caching 
annotations, which do method level caching interception 
on annotated classes running in dependency injection 
containers. 
Caching annotations are becoming increasingly popular:

•Ehcache Annotations for Spring
•Spring 3’s caching annotations. 

32
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Annotation Operations
The JSR107 annotations cover the most common cache 
operations including:

•@CacheResult
•@CachePut
•@CacheRemoveEntry
•@CacheRemoveAll

33
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Specific Overrides

public class DomainDao {
  @CachePut(cacheName="domainCache")
  public void updateDomain(String domainId, @CacheKeyParam int index, 
     @CacheValue Domain domain) {
     ...
   }
 }

34
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Fully Annotated Class Example
public class BlogManager {

    @CacheResult(cacheName="blogManager")
    public Blog getBlogEntry(String title) {...}
    

    @CacheRemoveEntry(cacheName="blogManager")
    public void removeBlogEntry(String title) {...}
    

    @CacheRemoveAll(cacheName="blogManager")
    public void removeAllBlogs() {...}

    @CachePut(cacheName=”blogManager”)
    public void createEntry(@CacheKeyParam String title, @CacheValue Blog blog) {...}

    @CacheResult(cacheName="blogManager")
    public Blog getEntryCached(String randomArg, @CacheKeyParam String title){...}
}

35
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Wiring Up Spring
<beans ...>  
    <context:annotation-config/>
    <jcache-spring:annotation-driven proxy-target-class="true"/>
    
    <bean id="cacheManager" class="javax.cache.Caching" 
               factory-method="getCacheManager" />
    <bean class="manager.CacheNameOnEachMethodBlogManagerImpl"/>
    <bean class="manager.ClassLevelCacheConfigBlogManagerImpl"/>
    <bean class="manager.UsingDefaultCacheNameBlogManagerImpl"/>
</beans>

36
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Wiring Up CDI
1. Create an implementation of 
javax.cache.annotation.BeanProvider

2.  Declare a resource named 
javax.cache.annotation.BeanProvider in the classpath at /
META-INF/services/.

For an example using the Weld implementation of CDI, see 
the CdiBeanProvider in our CDI test harness.   

37
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More Information
Jumping Off Point to Everything Else
https://github.com/jsr107/jsr107spec

Maven Snippet
<dependency>
  <groupId>javax.cache</groupId>
  <artifactId>cache-api</artifactId>
  <version>0.x</version>
</dependency>

38
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