
JSR107: The new Caching Standard

Greg Luck
CTO Terracotta/Founder Ehcache

JFokus 2012

Wednesday, 15 February 2012

Wednesday, 15 February 2012

What is Caching?
Temporary Storage of data or results that are likely to be
used more than once

3

Wednesday, 15 February 2012

Caching Characteristics
• Fastest To Implement
• Offload
• Performance
• Scale up
• Scale out (Distributed Caches Only)
• Buffer against load variability

4

Wednesday, 15 February 2012

Maximising Cache Efficiency

cache efficiency = cache hits / total hits

➡ High efficiency = high offload
➡ High efficiency = high performance

5

Wednesday, 15 February 2012

1

2

3

4

Caching Use Cases

Wednesday, 15 February 2012

S
ca

le
 U

P

Scale OUT

Commodity Server

Application

Types of Scaling

Wednesday, 15 February 2012

S
ca

le
 U

P

Scale OUT

Commodity Server

Application

Types of Scaling

Standalone
Caching
(in-process)

Distributed
Caching

Types of Caching

Wednesday, 15 February 2012

824

Local Disk Store
(Re-Startable)

Local Storage

Heap
Store

BigMemory
Off-Heap Store

5,000,000+

1,000,000

2

500

1,000+

Speed (TPS) Size (GB)

Scaling Example: Ehcache

100,000

Wednesday, 15 February 2012

824

Local Disk Store
(Re-Startable)

Local Storage

Heap
Store

BigMemory
Off-Heap Store

5,000,000+

1,000,000

2

500

1,000+

Speed (TPS) Size (GB)

Scaling Example: Ehcache

100,000

10,000s

Network Storage

Terracotta Server Array 1,000s

Wednesday, 15 February 2012

9

Network Topology Example: Ehcache

36

L1 L2

ELC

Eventual	 consistency
Strong	 consistency
Local	 Transac=ons
Explicit	 Locking
XA	 Transac=ons

PAC
Ac=ons	 on	 par==on:
	 -‐	 excep=on,	
-‐	 noop
-‐	 local	 reads

Par==on	 healing:	
-‐	 reconnect
-‐	 rejoin

Wednesday, 15 February 2012

Compared to NoSQL
• NoSQL focused on persistence - Caching on temporary
Storage

• NoSQL focused on BigData - Caching on valuable data
• Caching focused on RAM storage
• Caches are key-value stores, like key-value NoSQL
• Caching is a use case for NoSQL
• Much Lower latencies

10

Wednesday, 15 February 2012

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 r

e
a

d
 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 u

p
d

a
te

 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

The code is available publicly on GitHub: https://github.com/brianfrankcooper/YCSB

Comparative Speeds

Wednesday, 15 February 2012

11

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 r

e
a

d
 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 u

p
d

a
te

 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

The code is available publicly on GitHub: https://github.com/brianfrankcooper/YCSB

Comparative Speeds

Wednesday, 15 February 2012

11

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 r

e
a

d
 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 u

p
d

a
te

 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

The code is available publicly on GitHub: https://github.com/brianfrankcooper/YCSB

Compared	 with	 hybrid	 in-‐process	 and	 distributed	
cache:

Latency	 =	 L1	 speed	 *	 propor=on	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 L2	 speed	 *	 propor=on

Comparative Speeds

Wednesday, 15 February 2012

11

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 r

e
a

d
 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 u

p
d

a
te

 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

The code is available publicly on GitHub: https://github.com/brianfrankcooper/YCSB

Compared	 with	 hybrid	 in-‐process	 and	 distributed	
cache:

Latency	 =	 L1	 speed	 *	 propor=on	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 L2	 speed	 *	 propor=on

L1	 =	 0ms	 (<	 5us)	 for	 on-‐heap	 and	 50-‐100	 us	 off-‐heap
L2	 =	 2-‐3ms

80%	 L1	 Pareto	 Model:

	 =	 0	 *	 .8	 +	 3	 *	 .2
=	 .6	 ms

Comparative Speeds

Wednesday, 15 February 2012

11

10

•! 95/5 Read/update

Comment: Sherpa does very well here, with better read latency – only one lookup into a B-
tree is needed for reads, unlike log-structured systems where records must be
reconstructed. Cassandra also performs well, matching Sherpa until high throughputs.
HBase does well also, although read time is higher.

Workload B – Read heavy

0

2

4

6

8

10

12

14

16

18

20

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 r

e
a

d
 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Read latency

Cassandra HBase Sherpa MySQL

0

5

10

15

20

25

30

35

40

0 2000 4000 6000 8000 10000

A
v
e

ra
g

e
 u

p
d

a
te

 l
a

te
n

c
y
 (

m
s
)

Throughput (operations/sec)

Workload B - Update latency

Cassandra Hbase Sherpa MySQL

The code is available publicly on GitHub: https://github.com/brianfrankcooper/YCSB

Compared	 with	 hybrid	 in-‐process	 and	 distributed	
cache:

Latency	 =	 L1	 speed	 *	 propor=on	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 +	 L2	 speed	 *	 propor=on

L1	 =	 0ms	 (<	 5us)	 for	 on-‐heap	 and	 50-‐100	 us	 off-‐heap
L2	 =	 2-‐3ms

80%	 L1	 Pareto	 Model:

	 =	 0	 *	 .8	 +	 3	 *	 .2
=	 .6	 ms

90%	 L1	 Pareto	 Model:

latency	 =	 0	 *	 .9	 +	 3	 *	 .1
=	 .3	 ms

Comparative Speeds

Wednesday, 15 February 2012

Compared to (Concurrent)Map

12

• a Map is an in-process key-value store

Even local in caches add:

- expiry
- eviction once full of least valuable entries

• Map is always store by reference
• Caches typically are distributed

Wednesday, 15 February 2012

JSR107: Java Caching Standard
• javax.cache.Cache
• Being developed by JSR107
• Java 6 and above is required
• Included in JSR 342: Java EE 7 due end of 2012
• Immediately usable by Java EE 6 and Spring
• Immediately usable by any Java based app

13

Wednesday, 15 February 2012

Open, Transparent Standards Approach
• Terracotta and Oracle have tasked an FTE (Greg and
Yannis) with developing the spec

• Developed in the open
• 15 expert group members
• Lots of healthy debate. See the mailing list:
jsr107@googlegroups.com

• Specification is standard spec license - free to use and
implement

• Reference Implementation is Apache 2
• Tests which is the major part of the TCK is Apache 2

14

Wednesday, 15 February 2012

mailto:jsr107@googlegroups.com
mailto:jsr107@googlegroups.com

Expected Implementations
• Terracotta - Ehcache
• Oracle - Coherence
• JBoss - Infinispan
• IBM - ExtemeScale
• SpringSource - Gemfire
• GridGain
• TMax
• Google App Engine Java memcache client
• Spymemcache memcache client

15

Wednesday, 15 February 2012

Getting Started
API in Maven Central
<dependency>
 <groupId>javax.cache</groupId>
 <artifactId>cache-api</artifactId>
 <version>0.3-SNAPSHOT</version>
</dependency>

Everything to get started
https://github.com/jsr107/jsr107spec

16

Wednesday, 15 February 2012

Key Concepts
• CacheManager => Caches
• Cache => Entries
• Entry => Key, Value
• The basic API can be thought of map--like with the following
additional features:

• atomic operations, similar to java.util.ConcurrentMap
• read-through caching
• write-through caching
• cache event listeners
• statistics

17

Wednesday, 15 February 2012

API Features
Map-like with the following additional features:
• atomic operations, similar to java.util.ConcurrentMap
• read-through caching
• write-through caching
• cache event listeners
• statistics
• transactions including all isolation levels
• caching annotations
• generics

18

Wednesday, 15 February 2012

How to Please Everyone - No Dependencies
• Java SE - no dependencies.
• EE/Spring - provided dependencies - they are already there.

19

Wednesday, 15 February 2012

How to Please Everyone - Optional Features
Optional Features are:

• storeByReference
• XA and Local Transactions
• Caching Interceptor Annotations e.g.

Options interrogation at runtime via Capabilities API:
• ServiceProvider.isSupported(OptionalFeature feature)
• CacheManager.isSupported(OptionalFeature feature)

Works for implementers and Users
20

Wednesday, 15 February 2012

Aimed at Standalone and Distributed Caching
Standalone Features

• storeByReference - allows speeds similar to CHM
• CacheEventListener callbacks - useful for triggering events
Distributed Features

• storeByValue
• NotificationScope in CacheEventListener
• modifications/differences to Map and ConcurrentHashMap to
reduce network cost. e.g.
- No values() and many others.
- Calls may not return a value e.g. remove(Object key)
returns boolean rather than the old value 21

Wednesday, 15 February 2012

Not a Data Grid Specification
• Infinispan, Coherence and Extreme Scale are Data Grids
• Ehcache and Memcache are distributed client-server caches
• NoSQL key value stores are distributed client-server key
stores which could be used for caching
So:

• JSR107 does not mandate a topology
• JSR347 does - it is for data grids and builds on JSR107

22

Wednesday, 15 February 2012

Classloading
• Caches contain data shared by multiple threads/JVMs
which may be using Java SE, EE, OSGi or custom class
loading.

• This makes class loading tricky
• A classloader can be specified when the CacheManager is
created or a default is used. Either way all classes will be
loaded by the CacheManager’s classloader, not the
environment’s classloader.

• public static CacheManager getCacheManager(ClassLoader
classLoader)

• public static CacheManager getCacheManager(ClassLoader
classLoader, String name) 23

Wednesday, 15 February 2012

Creating a CacheManager
ServiceLoader Creation
We support the Java 6 java.util.ServiceLoader creational approach. It will
automaticaly detect a cache implementation in your classpath. You then create a
CacheManager with:
CacheManager cacheManager = CacheManagerFactory.getCacheManager();
or more fully:
CacheManager cacheManager = CacheManagerFactory.getCacheManager(“app1”,
Thread.currentThread().getContextClassLoader());

“new” Creation
CacheManager cacheManager = new RICacheManager(“app1”,
Thread.currentThread().getContextClassLoader());

24

Wednesday, 15 February 2012

Creating a Cache
To programmatically configure a cache named “testCache”
which is set for read-through

CacheManager cacheManager = getCacheManager();
Cache testCache = cacheManager.createCacheBuilder(“testCache)
.setReadThrough(true).setSize(Size.UNLIMITED).
.setExpiry(Duration.ETERNAL).build();

25

Text

Wednesday, 15 February 2012

Using a Cache
You get caches from the CacheManager. To get a cache
called “testCache”:

Cache<Integer, Date> cache = cacheManager.getCache(“testCache”);

26

Wednesday, 15 February 2012

Putting a value in a Cache
Cache<Integer, Date> cache = cacheManager.getCache(cacheName);
Date value1 = new Date();
Integer key = 1;
cache.put(key, value1);

27

Wednesday, 15 February 2012

Getting a Value
Cache<Integer, Date> cache = cacheManager.getCache(cacheName);
Date value2 = cache.get(key);

28

Wednesday, 15 February 2012

Removing a mapping
Cache<Integer, Date> cache = cacheManager.getCache(cacheName);
Integer key = 1;
cache.remove(1);

29

Wednesday, 15 February 2012

Exposing the underlying Cache’s API
Unwrap Method on Cache
 <T> T unwrap(java.lang.Class<T> cls);

Ehcache Example
net.sf.ehcache.Cache cache =
javax.cache.cache.unwrap(net.sf.ehcache.Cache.class);

30

Wednesday, 15 February 2012

IDE API Review

31

Wednesday, 15 February 2012

Annotations
JSR107 introduces a standardised set of caching
annotations, which do method level caching interception
on annotated classes running in dependency injection
containers.
Caching annotations are becoming increasingly popular:

•Ehcache Annotations for Spring
•Spring 3’s caching annotations.

32

Wednesday, 15 February 2012

http://code.google.com/p/ehcache-spring-annotations/
http://code.google.com/p/ehcache-spring-annotations/

Annotation Operations
The JSR107 annotations cover the most common cache
operations including:

•@CacheResult
•@CachePut
•@CacheRemoveEntry
•@CacheRemoveAll

33

Wednesday, 15 February 2012

Specific Overrides

public class DomainDao {
 @CachePut(cacheName="domainCache")
 public void updateDomain(String domainId, @CacheKeyParam int index,
 @CacheValue Domain domain) {
 ...
 }
 }

34

Wednesday, 15 February 2012

Fully Annotated Class Example
public class BlogManager {

 @CacheResult(cacheName="blogManager")
 public Blog getBlogEntry(String title) {...}

 @CacheRemoveEntry(cacheName="blogManager")
 public void removeBlogEntry(String title) {...}

 @CacheRemoveAll(cacheName="blogManager")
 public void removeAllBlogs() {...}

 @CachePut(cacheName=”blogManager”)
 public void createEntry(@CacheKeyParam String title, @CacheValue Blog blog) {...}

 @CacheResult(cacheName="blogManager")
 public Blog getEntryCached(String randomArg, @CacheKeyParam String title){...}
}

35

Wednesday, 15 February 2012

Wiring Up Spring
<beans ...>
 <context:annotation-config/>
 <jcache-spring:annotation-driven proxy-target-class="true"/>

 <bean id="cacheManager" class="javax.cache.Caching"
 factory-method="getCacheManager" />
 <bean class="manager.CacheNameOnEachMethodBlogManagerImpl"/>
 <bean class="manager.ClassLevelCacheConfigBlogManagerImpl"/>
 <bean class="manager.UsingDefaultCacheNameBlogManagerImpl"/>
</beans>

36

Wednesday, 15 February 2012

Wiring Up CDI
1. Create an implementation of
javax.cache.annotation.BeanProvider

2. Declare a resource named
javax.cache.annotation.BeanProvider in the classpath at /
META-INF/services/.

For an example using the Weld implementation of CDI, see
the CdiBeanProvider in our CDI test harness.

37

Wednesday, 15 February 2012

More Information
Jumping Off Point to Everything Else
https://github.com/jsr107/jsr107spec

Maven Snippet
<dependency>
 <groupId>javax.cache</groupId>
 <artifactId>cache-api</artifactId>
 <version>0.x</version>
</dependency>

38

Wednesday, 15 February 2012

https://github.com/jsr107/jsr107spec
https://github.com/jsr107/jsr107spec

