
Agile and Enterprise Architecture
Are Not Mutually Exclusive

-
A Patterns Approach

Rebecca Parsons
http://www.thoughtworks.com

Patterns context is the big E enterprise. Additional context as we
go along

Past Survey

Architecture conference workshop -- AKA lions den

I was impressed and surprised

> 90%

Well-Defined?

Their role in their organization

I thought lack of success resulted from unclear expectations

< 5%

Very sad

Succeeding?

Guess not. Other issues, like the organizational set up, contribute
to this result. And some of the behaviors I’ll describe.

Agile will not
succeed without

addressing
legitimate concerns

of EAs

Hypothesis.
BTW, I don’t shoot architects on sight and I am not anti-
architecture

define the terms

Note I am not discussing “succeed” here

Agile will not
succeed without

addressing
legitimate concerns

of EAs

Principles of agile: rapid feedback, visibility into progress,
adaptable, frequent peer review, focus on the value/cost
equation.
Also, not just about development but building an organization
that operates to these principles.

Agile will not
succeed without

addressing
legitimate

concerns of EAs

They do exist. Summary -- responsible for the value of the
business asset (software and dev capability) that delivers the value
to the business. It isn’t the software but the value delivered that
matters.

Agile will not
succeed without

addressing
legitimate concerns

of EAs

Many definitions. Focus here on enterprise, data, integration and
technical aspects of arch rather than app arch.

How, what, and
why

Three aspects of how EAs can do their work within the context of
a dev effort following agile principles. For each: problem
statement, some observed behavior and a “pattern” for productive
behaviors. How to work, what to deliver and why we’re delivering
what?

How to get work
done?

How do I do my job? How do I know they’re “doing what they’re
told”? How do I tell them what to do. How do I tell them what I am
worried about?

Seagull

General office folks swoop in from on high, no concern for what’s
already there, make a big mess, and leave. Folks clean up the
mess and pay no more attention to the contribution.

Pair on critical
stories

Gasp! Write code? Read code? Yes.
Org problems and ego problems and possibly skills issue. But
yes.

Think delusionally

(A over B means B still has to be good -- I don’t have that
constraint.
0% success is effective. Lack of innovation not related to stifling
initiative.

Alignment

Engage with the individuals. Devs and archs are both human
beings. Really. Shared understanding.

Pattern 1: Member
of the Team

Be vested in success. Have context. Share concerns. Articulate
risks. Articulate short and long terms costs of choices.
Org issue -- we’re outnumbered? Virtual arch group

What to deliver?

What are the artifacts? How do I communicate what I want and
need? How do we define success?

Documents from
on high

Remember the seagull? Still, this is the SOP for most architecture
groups: standards documents. Written out of context. Often
ignored.
Can be consequence of being outnumbered as well.

Technical Stories

With articulated business value, risks, etc. Allows for
prioritization and understanding of effort.

Acceptance tests

Criteria most important, automation where possible. What does
maintainable really mean? How do we know we’re done? Arch gets
to sign off on story!

Enterprise Re-
Use Framework

Scary but true. Arch’s view of what the reusable components are,
how to use them and what the teams’ need (not always with input
from the teams). Yes Arch has enterprise context. Descriptive vs
prescriptive

Harvested
Components

When you see actual re-use, harvest it. Don’t speculate about
what it will look like. See it and exploit it. And communicate it.
Virtual team again. Guessing right most of the time is hard.

End-point
Integration Tests

Documents assumptions and allow for parallel effort. Invaluable
for integration projects (and most enterprise projects are such
animals).

Pattern 2: Communication
in Project Context

Fit the needs of the architect into the way the team actually works
and consistent with principles. Don’t speculate. Don’t be vague.
Project is the driver so their work patterns matter most. So use
them to achieve your objectives.

How to decide?

Why do we do what work when?

Us and them

They’ll never understand (for some value of they) so we’ll need to
make them do as we say or we’ll just ignore them and do what we
want. I need a bigger stick. AKA ignore the problem. Result - the
wrong things get done.

Stakeholder
Negotiation

During prioritization, explain why the arch stories are important
in business terms. Understand time scales and relative value. If
you consistently fail, perhaps the initiative needs rethinking?
Maybe?

All or nothing

We can’t start until we have everything worked out. Data model,
reuse framework, etc.
That means we’ll never actually start. Does it really have to be the
whole OPS manual?

Informed risk
taking

Last responsible moment. Plan what needs to be planned.
Prioritize for risk as well as value, but explain it.
Business has the right to take risks - we must explain risk but it is
their call. Doesn’t always work out well, but still...

Pattern 3: Project Decisions
in Enterprise Context

Projects are focused on delivery in the short term. EA must also
look out for longer term. Must balance but someone must have
the big picture. Project teams are narrowly focused.

Recap of patterns

Pattern 1: Member
of the Team

Architects are people. Devs are people. Get work done by
collaborating as an equal on the team. Dictates don’t work well.
Figure out how to get leverage to overcome the numbers
imbalance. Virtual team.

Pattern 2: Communication
in Project Context

Deliver artifacts consistent with the work patterns. Use the
artifacts to increase effectiveness. Effectively re-use (ops
handover for example).

Pattern 3: Project Decisions
in Enterprise Context

Balance time frames. Understand and accept risk responsibly.
Informed decisions. Give the business their levers. It’s their
business.

Necessary but
not sufficient

And yes, it can still go horribly wrong. Requires change in roles,
in organizational relationships, in staffing, and in relationship
building. It really is people over process.

Questions?

http://www.thoughtworks/com
http://rebeccaparsons.com

