
Spring into the Cloud

Josh Long
@starbuxman
josh.long@springsource.com

Chris Richardson
@crichardson
chris.richardson@springsource.com

Monday, February 13, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

Spring and
Cloud Foundry: a

match made in
heaven

About this session

Monday, February 13, 12

About Chris

3

Monday, February 13, 12

(About Chris)

4

Monday, February 13, 12

About Chris()

5

Monday, February 13, 12

About Chris

6

Monday, February 13, 12

About Chris

http://www.theregister.co.uk/2009/08/19/springsource_cloud_foundry/

7

Monday, February 13, 12

http://www.theregister.co.uk/2009/08/19/springsource_cloud_foundry/
http://www.theregister.co.uk/2009/08/19/springsource_cloud_foundry/

About Chris

Developer Advocate for
CloudFoundry.com

8

Monday, February 13, 12

About Josh Long

Spring Developer Advocate
twitter: @starbuxman
josh.long@springsource.com

9

Monday, February 13, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

By The Way

10

Promo Code:
JFokus

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
§Wrap up

11

Monday, February 13, 12

Tomcat

Traditional web application architecture

12

Desktop
Browser Apache WAR MySQL

Database

Simple to develop
Simple to test
Simple to deploy
Simple to scale: just add Apache + more Tomcats

Monday, February 13, 12

But things are changing: this simple architecture is inadequate

13

Monday, February 13, 12

14

Smart phones overtake PCs in Q4 2010

New kinds of clients

Monday, February 13, 12

Users expect a rich, dynamic and interactive experience on mobile
devices and desktop

15

Java Web
Application

Desktop
Browser

HTTP Request

HTML/Javascript

Monday, February 13, 12

Users expect a rich, dynamic and interactive experience on mobile
devices and desktop

15

Java Web
Application

Desktop
Browser

HTTP Request

HTML/Javascript

Old style UI architecture isn’t good enough

Monday, February 13, 12

Users expect a rich, dynamic and interactive experience on mobile
devices and desktop

16

Web Services

Mobile and
Desktop Browser

WS Request

XML/JSON response

HTML5
Javascript
Application

Web Socket/Eventing

Finally we can have a 1980s UIs :-)

Monday, February 13, 12

Popular social networks

§Applications need to integrate with them
•Application integration problem
•Scaling graphs is challenging

§Application go viral through social networks
•Very rapid growth
•Capacity planning nightmare

17

Monday, February 13, 12

Need scalable architectures to handle massive loads

18

§Application tier:
•Replicated/clustered servers
•Modular so that components can be scaled differently
•Asynchronous architecture - communication via a message broker

§Database tier:
•Replication
•Sharding
•Polyglot persistence: Relational, NoSQL, NewSQL databases

Monday, February 13, 12

Data Explosion: Data Volumes increasing at 60% per year

1920Horizontally scalable, distributed NoSQL Databases

Eventual consistency rather than ACID

Monday, February 13, 12

Scaling development

20

§Forces multiple developers/teams to synchronize development
efforts

§Obstacle to frequent, independent deployments
§ Increases risk of failure - need to redeploy everything to change one

thing

WAR

User Management

Search

Ordering

Front End

!= Scalable
development

Monday, February 13, 12

Scaling development

21

§Need “SOA” approach
•Partition application into set of services
•Partition by noun or by verb

§Each team is responsible for a service and manages
their own release schedule.
•New code updates frequently
•Mature services upgrade infrequently

User
Management

Search

User
Management
Front-end

Ordering

Search
Front-End

Ordering
Front-End

Monday, February 13, 12

Modern application architecture

22

Tomcat
Desktop
Browser

User
Management

NodeJS
front-end
application

Native
Mobile
Application

HTML5
mobile
application

RabbitMQ

NodeJS
front-end
application

Tomcat

Ordering

MySQL

Mongo

Redis

Tomcat

Search

Monday, February 13, 12

Developing and testing these
applications is challenging

23

Monday, February 13, 12

Let’s imagine...

You are fixing a bug and want to run some
JUnit integration tests

Monday, February 13, 12

Who is going to install and
configure your sandbox: MySQL,
RabbitMQ, MongoDB,?

25

Monday, February 13, 12

Let’s imagine...

You have fixed a bug and want to run
some functional tests

Monday, February 13, 12

How long to purchase the
servers?

Monday, February 13, 12

Who is going to set up the
servers?

Monday, February 13, 12

Who is going to install and
configure MySQL, RabbitMQ,

MongoDB,?

Monday, February 13, 12

Let's imagine…

You want to deploy that application in
production

Monday, February 13, 12

How many servers do you need?

Monday, February 13, 12

How quickly can you scale up?

Monday, February 13, 12

Who is going to manage those servers?

33
http://www.oaklandzoo.org/site/zoo-info/animal-management/about-zookeeping

Monday, February 13, 12

http://www.oaklandzoo.org/site/zoo-info/animal-management/about-zookeeping
http://www.oaklandzoo.org/site/zoo-info/animal-management/about-zookeeping

Who is going to carry the pager
and answer that 3am call?

Monday, February 13, 12

35

Cloud Computing is the solution

Monday, February 13, 12

36

Cloud computing defined

IT delivered as a service
Over the internet
Self-service
Pay per use

Monday, February 13, 12

37

SaaS
Software as a Service

PaaS
Platform as a Service

IaaS
Infrastructure as a Service

Three layers of Cloud Computing

Monday, February 13, 12

SaaS

PaaS

IaaS

Amazon EC2 = IaaS

38

rent a
server by
the hour

Monday, February 13, 12

Sign up and deploy your application a few minutes later

39

§Login using your existing
Amazon account

§Select the web services
you want to use

§Only takes a few minutes

Monday, February 13, 12

Benefits of IaaS for small companies

40

§Get up and running quickly
§Validate your business idea without:
•Upfront costs
• Long-term financial commitment

§Leverage operational expertise of others
§Easily identify the right hardware for your application
§Scale up/down with load
§Reduces the risk of a success catastrophe

Monday, February 13, 12

Benefits of IaaS for enterprises

41

§ Increased agility - no need to wait for corporate IT
• In some companies it can take 2 months to acquire hardware
•Requires a long-term financial commitment, upfront costs

§Use for short-term projects, e.g.
•Websites for marketing campaigns
•New York Times style projects

§Reduce costs - use for applications that have fluctuating loads, e.g.
heavily used once a week, once a month

Monday, February 13, 12

IaaS: Lots of flexibility BUT

$ ssh …
root@ec2-67-202-41-150.compute-1.amazonaws.com
Last login: Sun Dec 30 18:54:43 2007 from 71.131.29.181
[root@domU-12-31-36-00-38-23:~]

You all you get

Everything else is your responsibility

Monday, February 13, 12

mailto:root@ec2-67-202-41-150.compute-1.amazonaws.com
mailto:root@ec2-67-202-41-150.compute-1.amazonaws.com

SaaS

PaaS

IaaS

We need to move up the stack

43

Need to be here

Monday, February 13, 12

44

What you need is PaaS =

Easy deployment

Application management

Easy scaling up and down

Services:
Database
Blob storage
Messaging
...

+

Monday, February 13, 12

Developers no longer need to be the janitor

45

Imagine if architects had
to be the janitor for
every building they
designed. This is how the
development team felt
prior to moving to
Windows Azure.
Duncan Mackenzie Nov 07, 2011
http://www.infoq.com/articles/Channel-9-Azure

Monday, February 13, 12

http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/articles/Channel-9-Azure
http://www.infoq.com/articles/Channel-9-Azure

PaaS Today

46

Monday, February 13, 12

The need for private PaaS

47

§Public PaaS is great
BUT

§Trust
§The need to feel in control
§ Investment in existing data centers
§Compliance with regulations
§ ...

THEREFORE

§Run a PaaS in your own datacenter

Monday, February 13, 12

And why not have your own very
private PaaS on your desktop?

48

Monday, February 13, 12

Cloud Deployment models

49

http://en.wikipedia.org/wiki/File:Cloud_computing_types.svg

Monday, February 13, 12

http://en.wikipedia.org/wiki/File:Cloud_computing_types.svg
http://en.wikipedia.org/wiki/File:Cloud_computing_types.svg

Ideally: Public and Private PaaS
use the same technology

50

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
§Wrap up

51

Monday, February 13, 12

Cloud Foundry: Services, Frameworks and Clouds

52

Monday, February 13, 12

Cloud Developer Bill of Rights (www.developerrights.org)

§ The Right to Code
 use the best tools for the job
§ The Right to Build Applications (and Only Applications) :
 devs != admins
§ The Right to Cloud Portability :
 write once, run anywhere (really!)
§ The Right to a Choice of Frameworks
 I say “potato,” you say “Node.js”
§ The Right to a Choice of Application Services
 MySQL, Redis, Mongo, All? More?
§ The Right to Platform Transparency
 simple != opaque; I need logs damnit!
§The Right to Emigrate
 it’s your code, your data, always. you can take it and leave.
§The Right of Ownership
 it’s your code, your data, always. you own access rights.
§The Right to Be Left Alone
 even applications need personal space, respect!
§The Right to Open Source
 lots of clouds during spring - both Apache2 licensed!

53

Monday, February 13, 12

http://www.developerrights.org/
http://www.developerrights.org/

Flexible Administration

54

Application Lifecycle API
• Create, start, stop, update
• Set URL(s), instance count, memory
• Get stats, logs, crashes, files

Services API
• Enumerate system services
• Select and create service instance
• Bind and unbind service & app(s)

Cloud
Foundry

APIs

Also includes
• account spacing
• clients: STS, VMC
• Info API for both system and account space

Monday, February 13, 12

Cloud Foundry: Choice of Runtimes

55

Monday, February 13, 12

Frameworks and Runtimes Supported

56

•Out of the Box
• Java (.WAR files, on Tomcat. Spring’s an ideal choice here, of course..)
•Scala (Lift, Play!)
•Ruby (Rails, Sinatra, etc.)
•Node.js
•Other
•Python (Stackato)
•PHP (AppFog)
•Haskell (1)
•Erlang (2)

1) http://www.cakesolutions.net/teamblogs/2011/11/25/haskell-happstack-on-cloudfoundry/
2) https://github.com/cloudfoundry/vcap/pull/20

Monday, February 13, 12

http://www.cakesolutions.net/teamblogs/2011/11/25/haskell-happstack-on-cloudfoundry/
http://www.cakesolutions.net/teamblogs/2011/11/25/haskell-happstack-on-cloudfoundry/
https://github.com/cloudfoundry/vcap/pull/20
https://github.com/cloudfoundry/vcap/pull/20

Deploying an Application

57

$ vmc push cf1 --path target \
 --url cer-cf1.cloudfoundry.com

CLI Application name Dir containing application (or, .WAR for Java)

Application URL

Monday, February 13, 12

$ vmc push cf1 --path target \
 --url cer-cf1.cloudfoundry.com
Detected a Java Web Application, is this correct?

[Yn]:

Deploying an Application

Monday, February 13, 12

$ vmc push cf1 --path target \
 --url cer-cf1.cloudfoundry.com
Detected a Java Web Application, is this correct?

[Yn]:

Memory Reservation [Default:512M] (64M, 128M, 256M,
512M, 1G or 2G)

Deploying an Application

Monday, February 13, 12

$ vmc push cf1 --path target \
 --url cer-cf1.cloudfoundry.com
Detected a Java Web Application, is this correct?

[Yn]:

Memory Reservation [Default:512M] (64M, 128M, 256M,
512M, 1G or 2G)

Creating Application: OK
Would you like to bind any services to 'cf1'? [yN]:

Deploying an Application

Monday, February 13, 12

$ vmc push cf1 --path target \
 --url cer-cf1.cloudfoundry.com
Detected a Java Web Application, is this correct?

[Yn]:

Memory Reservation [Default:512M] (64M, 128M, 256M,
512M, 1G or 2G)

Creating Application: OK
Would you like to bind any services to 'cf1'? [yN]:

Uploading Application:
 Checking for available resources: OK
 Packing application: OK
 Uploading (2K): OK
Push Status: OK
Starting Application: OK

Deploying an Application

Monday, February 13, 12

$ vmc push
Would you like to deploy from the current directory?

[Yn]: y
Pushing application 'html5expenses'...
Creating Application: OK
Creating Service [expenses-mongo]: OK
Binding Service [expenses-mongo]: OK
Creating Service [expenses-postgresql]: OK
Binding Service [expenses-postgresql]: OK
Uploading Application:
 Checking for available resources: OK
 Processing resources: OK
 Packing application: OK
 Uploading (6K): OK
Push Status: OK

Deploying an Application (with a Manifest)

Monday, February 13, 12

applications:

 target:

 name: html5expenses

 url: ${name}.${target-base}

 framework:

 name: spring

 info:

 mem: 512M

 description: Java SpringSource Spring Application

 exec:

 mem: 512M

 instances: 1

 services:

 expenses-mongo:

 type: :mongodb

 expenses-postgresql:

 type: :postgresql

Deploying an Application (with a manifest.yml)

Monday, February 13, 12

Cloud Foundry: Choice of Clouds

61

Monday, February 13, 12

Main Risk: Lock In

62

Welcome to the hotel california
Such a lovely place
Such a lovely face
Plenty of room at the hotel california
Any time of year, you can find it here

Last thing I remember, I was
Running for the door
I had to find the passage back
To the place I was before
’relax,’ said the night man,
We are programmed to receive.
You can checkout any time you like,
But you can never leave!

-the Eagles

Monday, February 13, 12

Open Source Advantage

§http://code.google.com/p/googleappengine/issues/detail?id=13

63

• https://github.com/cloudfoundry/vcap/pull/25

Monday, February 13, 12

http://code.google.com/p/googleappengine/issues/detail?id=13
http://code.google.com/p/googleappengine/issues/detail?id=13
https://github.com/cloudfoundry/vcap/pull/25
https://github.com/cloudfoundry/vcap/pull/25

Cloud Foundry: Clouds

64

§Joyent
• community lead for Node.js

§ActiveState
• community lead for Python, Perl
•Providers of Stackato private PaaS

§AppFog.com
• community lead for PHP
•PaaS for PHP

Monday, February 13, 12

65

Cloud Foundry.com

Runtimes & Frameworks

Services

vCenter / vSphere

Cloud Foundry

Infrastructure

Monday, February 13, 12

66

Cloud Foundry.org

The Source Code to Compile & Build Cloud Foundry

vCenter / vSphere

Cloud Foundry

Download

Code

Setup
Environment

Deploy Behind
Firewall

Setup Scripts

Monday, February 13, 12

Micro Cloud Foundry (beta)

67

Open source Platform as a Service project

App Instances Services

10.04

Dynamic Updating DNS

.COM

Monday, February 13, 12

Cloud Foundry: Services

68

Monday, February 13, 12

Cloud Foundry: Services

§Services are one of the extensibility planes in Cloud Foundry
• there are more services being contributed by the community daily!

§MySQL, Redis, MongoDB, RabbitMQ, PostgreSQL

§Services may be shared across applications

§Cloud Foundry abstracts the provisioning aspect of services through
a uniform API hosted in the cloud controller

§ It’s very easy to take an app and add a service to the app in a uniform
way
•Cassandra? COBOL / CICS, Oracle

69

Monday, February 13, 12

Cloud Foundry: Services

70

$ vmc create-service mysql --name mysql1
Creating Service: OK

$ vmc services

============== System Services ==============
+------------+---------+---------------------------------------+
| Service | Version | Description |
+------------+---------+---------------------------------------+
mongodb	1.8	MongoDB NoSQL store
mysql	5.1	MySQL database service
postgresql	9.0	PostgreSQL database service (vFabric)
rabbitmq	2.4	RabbitMQ messaging service
redis	2.2	Redis key-value store service
+------------+---------+---------------------------------------+

=========== Provisioned Services ============

+-------------+---------+
| Name | Service |
+-------------+---------+
| mysql1 | mysql |
+-------------+---------+

Monday, February 13, 12

Cloud Foundry: Services Creation and Binding

71

$VCAP_SERVICES:
{"redis-2.2":
[{"name":"redis_sample","label":"redis-2.2","plan":"free",
"tags":["redis","redis-2.2","key-value","nosql"],
"credentials":
{"hostname":"172.30.48.40",
"host":"172.30.48.40",
"port":5023,
"password":"8e9a901f-987d-4544-9a9e-ab0c143b5142",
"name":"de82c4bb-bd08-46c0-a850-af6534f71ca3"}
}],
"mongodb-1.8":[{"name":"mongodb-
e7d29","label":"mongodb-1.8","plan":"free","tags”:………………….

Monday, February 13, 12

Accessing Your Services

§ Debugging and accessing the data locally
• Caldecott --> Service tunneling. Access your Cloud Foundry service as if it was local.

72

Monday, February 13, 12

Tunneling

73

gem install caldecott

vmc tunnel <mongodb>

Monday, February 13, 12

Using your favorite tools

74

Monday, February 13, 12

75

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring Developers
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
§Wrap up

76

Monday, February 13, 12

§ de-facto standard programming model for enterprise Java
§ Two million+ developers
§ Rapid evolution
• Spring 1.0 – March 2004
• Spring 2.0 – October 2006
• Spring 2.5 – December 2007
• Spring 3.0 – November 2009
• Spring 3.1 - December 2011

§ Complete backward compatibility

The Spring framework

Monday, February 13, 12

Spring’s aim:

bring simplicity to java development

78

web tier
&

RIA
service tier batch

processing
integration &
messaging

data
access

 / NoSQL /
Big Data

mobile

tc Server
Tomcat

Jetty

lightweight

CloudFoundry
Google App Engine

Amazon Web Services

the cloud:

WebSphere
JBoss AS
WebLogic

 (on legacy versions, too!)

traditional

The Spring framework

Monday, February 13, 12

The Spring Framework

79

Framework Description

Spring Core The foundation

Spring @MVC the web leading framework (comes with the core framework)

Spring Security Extensible framework providing authentication, authorization

Spring Webflow An excellent web framework for building multi-page flows

Spring Web Services Contract-first, document–centric SOAP and XML web services

Spring Batch Powerful batch processing framework

Spring Integration Implements enterprise integration patterns

Spring BlazeDS Support for Adobe BlazeDS

Spring AMQP interface with AMQP message brokers, like RabbitMQ

Spring Data NoSQL options: HBase, MongoDB, Redis, Riak, CouchDB, Neo4J, etc.

Spring Social integrate Twitter, Facebook, Tripit, MySpace, LinkedIn, etc.

Spring Hadoop Provides a POJO-centric approach to building Hadoop applications

Spring Mobile, Spring Android provides first-class support for service
creation and consumption for iPhone, Android

Spring GemFire Provides the easiest interface for the GemFire enterprise data grid technology

Monday, February 13, 12

80

At its core, the Spring Framework...

§Provide comprehensive infrastructural support for developing
enterprise Java™ applications
•Spring deals with the plumbing
•So you can focus on solving the domain problem

Monday, February 13, 12

81

Spring Has Only One Type of Component: a POJO

§POJO: Plain ‘Ol Java Object
• standard objects
• objects have dependencies

public class CustomerRepository {

 // ‘depends’ on a database connection
 private javax.sql.DataSource dataSource;

}

• objects have lifecycles:

Connection conn = ... ;
conn.open() ;
...
conn.close();

beginning and
end of the lifecycle

Monday, February 13, 12

82

The Spring ApplicationContext

§Spring Beans are Managed by An ApplicationContext
•whether you’re in an application server, a web server, in regular Java SE application, in

the cloud, Spring is initialized through an ApplicationContext
• In a Java SE application:

• In a web application, you will configure an application context in your web.xml

ApplicationContext ctx =
 new GenericAnnotationApplicationContext(“com.foo.bar.my.package”);

<servlet>
 <servlet-name>Spring Dispatcher Servlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet</servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/spring/myAppContext*.xml</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

Monday, February 13, 12

http://web.xml
http://web.xml
http://web.servlet.DispatcherServlet
http://web.servlet.DispatcherServlet

Auto-Reconfiguration: Getting Started

§Deploy Spring apps to the cloud without changing a single line of
code

§Cloud Foundry automatically re-configures bean definitions to bind to
cloud services

§Works with Spring and Grails

83

Monday, February 13, 12

Auto-Reconfiguration: Relational DB

§Detects beans of type javax.sql.DataSource
§Connects to MySQL or PostgreSQL services
•Specifies driver, url, username, password, validation query

§Creates Commons DBCP or Tomcat DataSource
§Replaces existing DataSource

84

import org.apache.commons.dbcp.BasicDataSource;
...
@Bean(destroyMethod = "close")
public BasicDataSource dataSource(){

 BasicDataSource bds = new BasicDataSource();
 bds.setUrl("jdbc:h2:mem");
 bds.setPassword("");
 bds.setUsername("sa");
 bds.setDriverClass(Driver.class);
 return bds;
}

Monday, February 13, 12

Auto-Reconfiguration: ORM

§Adjusts Hibernate Dialect
§Changes hibernate.dialect property to

MySQLDialect (MyISAM) or PostgreSQLDialect
• org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
• org.springframework.orm.hibernate3.AbstractSessionFactoryBean

(Spring 2.5 and 3.0)
• org.springframework.orm.hibernate3.SessionFactoryBuilderSupport

(Spring 3.1)

85

@Bean
public LocalContainerEntityManagerFactoryBean entityManager(){
 LocalContainerEntityManagerFactoryBean lcem =
 new LocalContainerEntityManagerFactoryBean();
 lcem.setDataSource(dataSource());
 return lcem;	
}

Monday, February 13, 12

Auto-Reconfiguration: How It Works

§Cloud Foundry installs a BeanFactoryPostProcessor in your
application context during staging
•Adds jar to your application
•Modifies web.xml to load BFPP

• Adds context file to contextConfigLocation
• web-app context-param
• Spring MVC DispatcherServlet init-param

§Adds PostgreSQL and MySQL driver jars as needed for DataSource
reconfiguration

86

Monday, February 13, 12

http://web.xml
http://web.xml

The Spring Developer’s Perspective: Auto Reconfiguration

87

Monday, February 13, 12

The Environment

§Asking Questions
•You can introspect the environment variables (System.getenv(“VCAP_SERVICES”)),

or...
• import the CloudFoundry runtime API from Java!

• (much simpler)

88

 <dependency>
 <groupId>org.cloudfoundry</groupId>
 <artifactId>cloudfoundry-runtime</artifactId>
 <version>0.8.0</version>
 </dependency>

Monday, February 13, 12

The Spring Developer’s Perspective: The Environment

89

@Controller
public class HomeController {

 @RequestMapping(value = "/", method = RequestMethod.GET)
 public String home(Map<String, Object> model) {
 CloudEnvironment cloudEnvironment = new CloudEnvironment();
 if (cloudEnvironment.getCloudApiUri() != null) {
 model.put("host", cloudEnvironment.getInstanceInfo().getHost());
 model.put("port", cloudEnvironment.getInstanceInfo().getPort());
 }
 return "home";
 }

}

Monday, February 13, 12

Giving Your Application Clues with the env command

90

env <appname>
List application environment variables

env-add <appname> <variable[=]value>

env-del <appname> <variable>

Add an environment variable to an application

Delete an environment variable to an application

$ env-add html5expenses PAYMENT_GATEWAY=http://blah.com

 is the same as..

$ export PAYMENT_GATEWAY=http://blah.com

Monday, February 13, 12

http://blah.com
http://blah.com
http://blah.com
http://blah.com

Introducing... the Cloud Namespace

§<cloud:> namespace for use in Spring app contexts
§Provides application-level control of bean service bindings
§Recommended for development of new cloud apps
§Use when:
•You have multiple services of the same type
•You have multiple connecting beans of the same type

• e.g. DataSource, MongoDBFactory
•You have custom bean configuration

• e.g. DataSource pool size, connection properties

91

Monday, February 13, 12

<cloud:data-source>
§Configures a DataSource bean
•Commons DBCP or Tomcat DataSource

§Basic attributes:
• id: defaults to service name
• service-name: only needed if you have multiple relational database services bound to

the app

92

<cloud:data-source id="dataSource"/>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">
 <property name="dataSource" ref="dataSource"/>
</bean>

Monday, February 13, 12

<cloud:data-source> Example

93

<cloud:data-source id="dataSource" service-name="mySQLSvc">
<cloud:pool pool-size="1-5"/>
<cloud:connection properties="charset=utf-8"/>

</cloud:data-source>

...

@Autowired
private DataSource dataSource ;

Monday, February 13, 12

<cloud:properties>
§Exposes basic information about services that can be consumed with

Spring’s property placeholder support
§Basic attributes:
• id: the name of the properties bean

§Properties automatically available when deploying Spring 3.1
applications

94

<cloud:properties id="cloudProperties" />
<context:property-placeholder properties-ref="cloudProperties"/>

@Autowired private Environment environment;

@Bean
public ComboPooledDataSource dataSource() throws Exception {
 String user = this.environment.getProperty
 ("cloud.services.mysql.connection.username");
 ComboPooledDataSource cpds = new ComboPooledDataSource();
 cpds.setUser(user);
 return cpds;
}

Monday, February 13, 12

Spring 3.1 Environment Abstraction
§Bean definitions for a specific environment (Profiles)
• e.g. development, testing, production
•Possibly different deployment environments
•Activate profiles by name

• spring.profiles.active system property
• Other means outside deployment unit
• “default” profile activates if no other profiles specified

§Custom resolution of placeholders
•Dependent on the actual environment
•Ordered property sources

§Requires Spring 3.1 (or later)

95

Monday, February 13, 12

Isolating Cloud Foundry Configuration
§Switch between local, testing and Cloud Foundry deployments with

Profiles
§“cloud” profile automatically activates on Cloud Foundry
• usage of the cloud namespace should occur within the cloud profile block

96

Monday, February 13, 12

Isolating Cloud Foundry Configuration

97

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
	 <cloud:data-source id="dataSource" />
</beans>
	
<beans profile="default">
	 <bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">
	 <property name="url" value="jdbc:mysql://localhost/my_db" />
	 </bean>
</beans>

Monday, February 13, 12

Profile Support: How It Works
§Cloud Foundry installs a custom ApplicationContextInitializer in your

app during staging
•Modifies web.xml

• Adds to contextInitializerClasses context-param

§Adds “cloud” as an active profile
§Adds a PropertySource to the Environment

98

Monday, February 13, 12

http://web.xml
http://web.xml

Java Configuration
§Alternative to <cloud:*> namespace
•Spring Java Configuration
•Non-Spring apps

§Programmatic creation of service connection factories
•Using ServiceCreator and ServiceInfo classes

§Works well with CloudEnvironment
§ Included in cloudfoundry-runtime lib

99

Monday, February 13, 12

Java Configuration with Profiles

100

@Configuration
@Profile(“local”)
public class LocalDataSourceConfiguration {

 @Bean public javax.sql.DataSource dataSource() { ... }

}

@Configuration
@Profile(“cloud”)
public class CloudDataSourceConfiguration {

 @Bean public javax.sql.DataSource dataSource() { ... }

}

Monday, February 13, 12

Using ServiceCreator

101

//Provides access to CF service and application env info
CloudEnvironment environment = new CloudEnvironment();
	 	
//Retrieve env info for bound service named "mysqlService"
RdbmsServiceInfo mysqlSvc =
 environment.getServiceInfo("mysqlService", RdbmsServiceInfo.class);
	 	
//create a DataSource bound to the service
RdbmsServiceCreator dataSourceCreator = new RdbmsServiceCreator();

DataSource dataSource = dataSourceCreator.createService(mysqlSvc);

Monday, February 13, 12

Using ServiceInfo

102

//Provides access to CF service and application env info
CloudEnvironment environment = new CloudEnvironment();
	 	
//Retrieve env info for bound service named "mongoService"
MongoServiceInfo mongoSvc =
 environment.getServiceInfo("mongoService", MongoServiceInfo.class);
	 	
//create a Mongo DB bound to the service
Mongo mongoDB = new Mongo(mongoSvc.getHost(), mongoSvc.getPort());

Monday, February 13, 12

Cloud Foundry Internal view

103

Monday, February 13, 12

104

Cloud Foundry Internal view

Monday, February 13, 12

Cloud Foundry: Cloud Controller

§ It is responsible for all state changes in the system
•Ensuring all dependencies are available
•Binding the application to services

§Anything that effects users, apps, or services is controlled by the
Cloud Controllers
•Examples : vmc push, vmc instances, vmc create-service, etc. are driven by the

Cloud Controller
§Once staged, the Cloud Controller is responsible for connecting the

application to a DEA execution unit

105

Monday, February 13, 12

Cloud Foundry: Health Manager

§Health manager reconciles world view of cloud controller
§puts “sick” or inconsistent parts of cloud into “flapping” state

106

Monday, February 13, 12

Cloud Foundry: Router

§ routes requests to REST API to a cloud controller
§ route from URIs to applications
§ load balancer

107

Web

App

DB

App Instance

Service

Request
Web Interface

Load balancer / router
Response

Monday, February 13, 12

Cloud Foundry: Router

§Divides work across configured application instances (round robin)
§Features session affinity, or “sticky sessions”
• a request to a web endpoint that uses a session will be pinned to the original server of

the request on subsequent requests
§ there is NO session state failover
• don’t put business data in the session
• promote critical process state to a fast in-RAM store like Redis

• (which Cloud Foundry supports!)

108

Monday, February 13, 12

Cloud Foundry: Scaling Up and Down with the Router

109

Monday, February 13, 12

110

Cloud Foundry Internal view

Monday, February 13, 12

Cloud Foundry: DEA

§The system maintains a pool of standby DEAs and these act as the
VM-level container for an application

§DEAs support both single and multi-tenant operation (1 app per DEA
VM, or n apps per DEA VM)

§DEAs provide a secure/constrained OS environment running the
application’s app-server and the application code

111

Monday, February 13, 12

Cloud Foundry: DEA

§ If an application instance crashes
•DEA detects unexpected exit, DEA broadcasts message
•Routers remove instance from routing
•Health manager notifies cloud controller

§ If a DEA VM crashes
•Application instances become unavailable
•Health manager notices the missing instances and notifies the cloud controller
• cloud controller requests application instances to be started
• existing DEA will reply and start the applications

112

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Developing NoSQL applications for Cloud Foundry
•Why NoSQL?
•Overview of NoSQL databases
• Introduction to Spring Data
•Using Spring Data for Redis
•Using Spring Data for Mongo
•Deploying on Cloud Foundry

§Application integration with RabbitMQ and Spring AMQP
§Wrap up

113

Monday, February 13, 12

Cloud Foundry provides NoSQL-aaS

114

But what’s a NoSQL database?

Why would you want to use it?

How do you use it?

Monday, February 13, 12

Relational databases are great...

§SQL
•High-level
•Sorting
•Aggregation

§ACID semantics
§Well supported
• JDBC
•Hibernate/JPA
•Spring

§Well understood
•Developers
•Operators

115

Monday, February 13, 12

... but they have limitations

§Object/relational impedance mismatch
§Complicated to map rich domain model to relational schema
§Difficult to handle semi-structured data, e.g. varying attributes
§Schema changes
§Extremely difficult/impossible to scale
§Poor performance for some use cases

116

Monday, February 13, 12

Solution: Spend Money

http://upload.wikimedia.org/wikipedia/commons/e/e5/Rising_Sun_Yacht.JPG

OR

http://www.trekbikes.com/us/en/bikes/road/race_performance/madone_5_series/madone_5_2/#

117

Monday, February 13, 12

Solution: Use NoSQL

Benefits
• Higher performance
• Higher scalability
• Richer data-model
• Schema-less

Drawbacks
• Limited transactions
• Relaxed consistency
• Unconstrained data

118

Monday, February 13, 12

Growing in popularity…

119

Monday, February 13, 12

Future = multi-paradigm data storage for enterprise applications

IEEE Software Sept/October 2010 - Debasish Ghosh / Twitter @debasishg

e.g. Netflix
• RDBMS
• SimpleDB
• Cassandra
• Hadoop/Hbase

120

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
•Why NoSQL?
•Overview of NoSQL databases
• Introduction to Spring Data
•Using Spring Data for Redis
•Using Spring Data for Mongo
•Deploying on Cloud Foundry

§Application integration with RabbitMQ and Spring AMQP
§Wrap up

121

Monday, February 13, 12

§Advanced key-value store
§Very fast
§Optional persistence
§Transactions with optimistic locking
§Master-slave replication
§Sharding using client-side consistent hashing

Redis

122

Monday, February 13, 12

§Advanced key-value store
§Very fast
§Optional persistence
§Transactions with optimistic locking
§Master-slave replication
§Sharding using client-side consistent hashing

Redis

K1

K2

K3

V1

V2

V2

122

Monday, February 13, 12

Adding members to a sorted set

Redis Server

zadd myset 5.0 a

Key

Score Value

123

Monday, February 13, 12

Adding members to a sorted set

Redis Server

zadd myset 5.0 a

Key

Score Value

123

Monday, February 13, 12

Adding members to a sorted set

Redis Server

zadd myset 5.0 a myset
a

5.0

Key

Score Value

123

Monday, February 13, 12

Adding members to a sorted set

Redis Server

zadd myset 10.0 b myset
a

5.0

b

10.

124

Monday, February 13, 12

Adding members to a sorted set

Redis Server

zadd myset 1.0 c myset
a

5.0

b

10.

c

1.0

125

Monday, February 13, 12

Retrieving members by index range

Redis Server

zrange myset 0 1

myset
a

5.0

b

10.

c

1.0

Key

Start
Index

Stop
Index

126

Monday, February 13, 12

Retrieving members by index range

Redis Server

zrange myset 0 1

myset
a

5.0

b

10.

c

1.0
ac

Key

Start
Index

Stop
Index

126

Monday, February 13, 12

Retrieving members by score

Redis Server

zrangebyscore myset 1 6

myset
a

5.0

b

10.

c

1.0

Key Min.
Score

Max.
Score

127

Monday, February 13, 12

Retrieving members by score

Redis Server

zrangebyscore myset 1 6

myset
a

5.0

b

10.

c

1.0
ac

Key Min.
Score

Max.
Score

127

Monday, February 13, 12

Redis use cases

§Drop-in replacement for Memcached
•Session state
•Cache of data retrieved from SOR

§Replica of SOR for queries needing high-performance
§Handling tasks that overload an RDBMS
•Hit counts - INCR
•Most recent N items - LPUSH and LTRIM
•Randomly selecting an item – SRANDMEMBER
•Queuing – Lists with LPOP, RPUSH, ….
•High score tables – Sorted sets and ZINCRBY
•…

§Notable users: github, guardian.co.uk, ….

128

Monday, February 13, 12

MongoDB

§Document-oriented database
• JSON-style documents: Lists, Maps, primitives
•Schema-less

§Transaction = update of a single document
§Rich query language for dynamic queries
§Very fast
§Writes are asynchronous!
§Highly scalable and available

129

Monday, February 13, 12

Data model = Binary JSON documents

{
 "name" : "Sahn Maru",
 "type" : ”Korean",
 "serviceArea" : [
 "94619",
 "94618"
],
 "openingHours" : [
 {
 "dayOfWeek" : "Wednesday",
 "open" : 1730,
 "close" : 2230
 }
],
 "_id" : ObjectId("4bddc2f49d1505567c6220a0")
}

Sequence of
bytes on
disk è fast
i/o

130

Monday, February 13, 12

Collection: Restaurants

Data model = Binary JSON documents

{
 "name" : "Sahn Maru",
 "type" : ”Korean",
 "serviceArea" : [
 "94619",
 "94618"
],
 "openingHours" : [
 {
 "dayOfWeek" : "Wednesday",
 "open" : 1730,
 "close" : 2230
 }
],
 "_id" : ObjectId("4bddc2f49d1505567c6220a0")
}

Sequence of
bytes on
disk è fast
i/o

130

Monday, February 13, 12

Database: Food To Go
Collection: Restaurants

Data model = Binary JSON documents

{
 "name" : "Sahn Maru",
 "type" : ”Korean",
 "serviceArea" : [
 "94619",
 "94618"
],
 "openingHours" : [
 {
 "dayOfWeek" : "Wednesday",
 "open" : 1730,
 "close" : 2230
 }
],
 "_id" : ObjectId("4bddc2f49d1505567c6220a0")
}

Sequence of
bytes on
disk è fast
i/o

130

Monday, February 13, 12

Server

Database: Food To Go
Collection: Restaurants

Data model = Binary JSON documents

{
 "name" : "Sahn Maru",
 "type" : ”Korean",
 "serviceArea" : [
 "94619",
 "94618"
],
 "openingHours" : [
 {
 "dayOfWeek" : "Wednesday",
 "open" : 1730,
 "close" : 2230
 }
],
 "_id" : ObjectId("4bddc2f49d1505567c6220a0")
}

Sequence of
bytes on
disk è fast
i/o

130

Monday, February 13, 12

MongoDB CLI

> r = {name: 'Ajanta'}

> db.restaurants.save(r)

> r

{ "_id" : ObjectId("4e555dd9646e338dca11710c"), "name" : "Ajanta" }

> r = db.restaurants.findOne({name:"Ajanta"})

{ "_id" : ObjectId("4e555dd9646e338dca11710c"), "name" : "Ajanta" }

> r.type= "Indian”

> db.restaurants.save(r)

> db.restaurants.update({name:"Ajanta"},

 {$set: {name:"Ajanta Restaurant"},

 $push: { menuItems: {name: "Chicken Vindaloo"}}})

> db.restaurants.find()

{ "_id" : ObjectId("4e555dd9646e338dca11710c"), "menuItems" : [{ "name" : "Chicken
Vindaloo" }], "name" : "Ajanta Restaurant", "type" : "Indian" }

> db.restaurants.remove(r.id)

131

Monday, February 13, 12

MongoDB query by example

{
 serviceArea:"94619",
 openingHours: {
 $elemMatch : {
 "dayOfWeek" : "Monday",
 "open": {$lte: 1800},
 "close": {$gte: 1800}
 }
 }
}

 DBCursor cursor = collection.find(qbeObject);
 while (cursor.hasNext()) {
 DBObject o = cursor.next();
 …
 }

132

Find a restaurant
that serves the
94619 zip code and
is open at 6pm on a
Monday

Monday, February 13, 12

MongoDB use cases

§Use cases
•High volume writes
•Complex data
•Semi-structured data

§Who is using it?
•Shutterfly, Foursquare
•Bit.ly Intuit
•SourceForge, NY Times
•GILT Groupe, Evite,
•SugarCRM

133

Monday, February 13, 12

Other NoSQL databases

http://nosql-database.org/ lists 122+ NoSQL databases

Type Examples

Extensible columns/Column-oriented Hbase
SimpleDB
DynamoDB

Graph Neo4j

Key-value Membase
Voldemort

Document CouchDb

134

Monday, February 13, 12

http://nosql-database.org/
http://nosql-database.org/

Other NoSQL databases

http://nosql-database.org/ lists 122+ NoSQL databases

Type Examples

Extensible columns/Column-oriented Hbase
SimpleDB
DynamoDB

Graph Neo4j

Key-value Membase
Voldemort

Document CouchDb

134

Sorr
y if

 I l
eft

out
you

r fa
vori

te

Monday, February 13, 12

http://nosql-database.org/
http://nosql-database.org/

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
•Why NoSQL?
•Overview of NoSQL databases
• Introduction to Spring Data
•Using Spring Data for Redis
•Using Spring Data for Mongo
•Deploying on Cloud Foundry

§Application integration with RabbitMQ and Spring AMQP
§Wrap up

135

Monday, February 13, 12

Spring Data is here to help

http://www.springsource.org/spring-data

NoSQL databases

For

136

Monday, February 13, 12

Spring Data sub-projects

§SQL: Spring Data JPA, JDBC extensions
§Commons: Polyglot persistence
§Key-Value: Redis, Riak
§Document: MongoDB
§Graph: Neo4j
§GORM for NoSQL

137

Monday, February 13, 12

What you get

§Template classes that hide the boilerplate code
§Auto-generated (generic) repositories
§Java ⇔ NoSQL mapping
§Cross Store Persistence
§Support in Roo and Grails

138

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
•Why NoSQL?
•Overview of NoSQL databases
• Introduction to Spring Data
•Using Spring Data for Redis
•Using Spring Data for Mongo
•Deploying on Cloud Foundry

§Application integration with RabbitMQ and Spring AMQP
§Wrap up

139

Monday, February 13, 12

Redis challenges

§Connection management
•Need to get and close connections

§Data mapping
•Redis = binary/strings
•Application = objects

§Multiple client libraries
•Gratuitously different APIs

140

Monday, February 13, 12

Spring Data for Redis

§Low-level - RedisConnection(Factory)
•Supports Jedis, Jredis and Rjc
• Insulates client code from underlying library

§High-level - RedisTemplate
•Builds on RedisConnection(Factory)
•Connection management
•Pluggable Java ⇔ binary conversion

§Support classes:
•Collections-backed by RedisTemplate
•Atomic Counters

141

Monday, February 13, 12

Low-level API = RedisConnection(Factory)

142

Monday, February 13, 12

Using RedisConnectionFactory
public class LowLevelRedisTest {

 @Autowired private RedisConnectionFactory redisConnectionFactory;

 @Test
 public void testLowLevel() {
 RedisConnection con = null;
 try {
 con = redisConnectionFactory.getConnection();

 byte[] key = "foo".getBytes();
 byte[] value = "bar".getBytes();
 con.set(key, value);

 byte[] retrievedValue = con.get(key);

 Assert.assertArrayEquals(value, retrievedValue);

 } finally {
 if (con != null) { con.close(); }
 }
 }

Ugly byte arrays L

Library independent code J

143

Need to clean up L

Monday, February 13, 12

Configuring RedisConnectionFactory

@Configuration
public class RedisConfiguration {

 @Value("${databaseHostName}")
 protected String databaseHostName;

 @Bean
 public RedisConnectionFactory jedisConnectionFactory() {
 JedisConnectionFactory factory = new JedisConnectionFactory();
 factory.setHostName(databaseHostName);
 factory.setPort(6379);
 factory.setUsePool(true);
 return factory;
 }

}

144

Monday, February 13, 12

High-level API = RedisTemplate

§Builds on RedisConnection(Factory)
§Analogous to JdbcTemplate
§Parameterized type
•K - Key type
•V – Value type

§Handles Java Key/Value ⇔ Redis byte[]
§Maps Redis exceptions ⇒ DataAccessException
§StringRedisTemplate
•Extends RedisTemplate<String, String>
•Keys and values are Strings

145

Monday, February 13, 12

Using StringRedisTemplate
public class RedisTemplateTest {

 @Autowired private StringRedisTemplate stringRedisTemplate;

 @Test
 public void testGetAndSet() {
 stringRedisTemplate.opsForValue().set("foo", "bar");
 assertEquals("bar", stringRedisTemplate.opsForValue().get("foo"));
 }

 @Test
 public void testHashOps() {
 stringRedisTemplate.opsForHash().put("myHash", "myKey", "value");

 assertEquals("value",
 stringRedisTemplate.opsForHash().get("myHash", "myKey"));

 assertEquals(Collections.singleton("myKey"),
 stringRedisTemplate.opsForHash().keys("myHash"));

 assertEquals(Collections.singletonMap("myKey", "value"),
 stringRedisTemplate.opsForHash().entries("myHash"));
 }

Converts between Strings and byte[]

Returns KV type specific interface

146

Monday, February 13, 12

Configuring StringRedisTemplate

@Configuration
public class RedisConfiguration {

 @Bean
 public RedisConnectionFactory jedisConnectionFactory() {
 …
 }

 @Bean
 public StringRedisTemplate stringRedisTemplate(RedisConnectionFactory
	 	 	 	 	 	 factory) {
 StringRedisTemplate template = new StringRedisTemplate();
 template.setConnectionFactory(factory);
 return template;
 }
}

147

Monday, February 13, 12

RedisTemplate: Java objects ⇔ binary data

§RedisTemplate has multiple Serializers:
•DefaultSerializer - defaults to JdkSerializationRedisSerializer
•KeySerializer
•ValueSerializer
•HashKeySerializer
•HashValueSerializer

148

Monday, February 13, 12

StringRedisTemplate uses StringRedisSerializer

149

Monday, February 13, 12

Register serializers to override the default behavior

150

Converted to JSON by RedisTemplate

Monday, February 13, 12

Redis caching support

Template needs to (de)serialize K and V

151

KVs = <prefix + K, V>
Sorted set of all keys for clear()

Monday, February 13, 12

Other Spring data for Redis features

152

§Redis-backed collections
§Atomic counters
§Support for Redis Pub/sub

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
•Why NoSQL?
•Overview of NoSQL databases
• Introduction to Spring Data
•Using Spring Data for Redis
•Using Spring Data for Mongo
•Deploying on Cloud Foundry

§Application integration with RabbitMQ and Spring AMQP
§Wrap up

153

Monday, February 13, 12

MongoDB API usage patterns

§Create and store Mongo singleton
§Externalized server host, port etc.
§ Inserts/Updates
•Map application POJO ⇒ DBObject
•mongo.getDatabase(…).getCollection(…)
•Partial document updates
•Configure asynchronous vs. synchronous writes

§Queries
•Construct query object
•mongo.getDatabase(…).getCollection(…)
• Iterate through Cursor
•Map DBObject ⇒ application POJO

⇒ Higher-level than JDBC but still repetitive, …

154

Monday, February 13, 12

Spring Data - MongoDB

§MongoTemplate
§Generic repositories
§Querydsl integration
§Cross-store persistence

155

Monday, February 13, 12

MongoTemplate

databaseName
userId
Password
defaultCollectionName

writeConcern
writeResultChecking

save()
insert()
remove()
updateFirst()
findOne()
find()
…

MongoTemplate

Mongo
(Java Driver class)

<<interface>>
MongoConvertor

write(Object, DBObject)
read(Class, DBObject)

uses

POJO ó DBObject
mapping

Simplifies data access
Translates exceptions

MongoMapping
Converter

156

Monday, February 13, 12

Example entity

public class Restaurant {
 private String id;
 private String name;
 private List<MenuItem> menuItems;

 public Restaurant() {
 }

 public Restaurant(String name) {
 this.name = name;
 …
 }

 public String getName() { return name; }

 public void setName(String name) {
 this.name = name;
 }

 …getters and setters…

public class MenuItem {
 private String name;
 private double price;

 public MenuItem() {
 }

 public MenuItem(String name,
 double price) {
 this.name = name;
 this.price = price;
 }

 …getters and setters…

157

Monday, February 13, 12

Example data access code

@Repository
public class RestaurantRepository {

 @Autowired
 private MongoTemplate mongoTemplate;

 public static final String RESTAURANTS_COLLECTION = "restaurants";

 public void add(Restaurant restaurant) {
 mongoTemplate.save(RESTAURANTS_COLLECTION, restaurant);
 }

 public List<Restaurant> findRestaurantsByName(String restaurantName) {
 return mongoTemplate.find(RESTAURANTS_COLLECTION, 	
	 new Query(where("name").is(restaurantName)),
	 Restaurant.class);
 }

158

Monday, February 13, 12

Mongo document

{
 "_id" : ObjectId("4d977f55d3fe3119c904e026"),
 "menuItems" : [
	 {
	 	 "name" : "Tandoori Portobello Mushrooms",
	 	 "price" : 5.5
	 },
	 {
	 	 "name" : "Duck Curry Kerala",
	 	 "price" : 15
	 }
],
 "name" : "Ajanta"
}

159

Monday, February 13, 12

Spring MongoDB Example - Config 1
@Configuration public class MongoDbExampleConfig {
 private @Value("#{mongoDbProperties.databaseName}") String mongoDbDatabase;
 private @Value("#{mongoDbProperties.host}") String mongoDbHost;

 @Bean public Mongo mongo() throws Exception {
 return new Mongo(mongoDbHost);
 }

 @Bean public MongoTemplate mongoTemplate(Mongo mongo) {
 MongoTemplate mongoTemplate = new MongoTemplate(mongo, mongoDbDatabase);
 mongoTemplate.setWriteConcern(WriteConcern.SAFE);
 mongoTemplate.setWriteResultChecking(WriteResultChecking.EXCEPTION);
 return mongoTemplate;
 }
…

databaseName=demo1
host=192.168.253.150

mongodb.properties:

<beans>
 <context:annotation-config/>

 <context:component-scan
 base-package="net.chrisrichardson.mongodb.example"/>

<util:properties id="mongoDbProperties"
 location="mongodb.properties"/>

</beans>

External Config

160

Monday, February 13, 12

Spring MongoDB Example - Config 2

<bean id="mongoTemplate"
 class="org.springframework.data.mongodb.core.MongoTemplate">
 <constructor-arg ref="mongoFactory"/>
</bean>

<mongo:db-factory id="mongoFactory"
host= "#{mongoDbProperties.host}"
dbname="#{mongoDbProperties.databaseName}" />

<util:properties

id="mongoDbProperties"
location="mongodb.properties"/>

161

Monday, February 13, 12

Summarize other features

162

§ In-place updates
§Callbacks
§Generic repositories
§Annotation-driven mapping
§Support for QueryDSL
§Cross-store persistence

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
•Why NoSQL?
•Overview of NoSQL databases
• Introduction to Spring Data
•Using Spring Data for Redis
•Using Spring Data for Mongo
•Deploying on Cloud Foundry

§Application integration with RabbitMQ and Spring AMQP
§Wrap up

163

Monday, February 13, 12

Using Mongo and Redis with Cloud Foundry

§Create a service - Mongo or Redis
§Bind it to your application
§Use <cloud:*/> namespace to access the bound service
•when cloud profile is active

164

Monday, February 13, 12

Creating a Redis Server

165

Monday, February 13, 12

Deploying a Redis application

166

Monday, February 13, 12

Redis bean definitions

167

Monday, February 13, 12

Using the application

168

Monday, February 13, 12

About <cloud:redis-connection-factory/>

169

<cloud:redis-connection-factory
 id="redisConnectionFactory"
 service-name="redis1"
 />

Use when multiple
services are bound

[]

Monday, February 13, 12

Deploying a Mongo application

170

Monday, February 13, 12

MongoDB bean definitions

171

Monday, February 13, 12

Using the Mongo Application

172

Monday, February 13, 12

About <cloud:mongo-db-factory/>

173

<cloud:mongo-db-factory
 id="mongoFactory"
 service-name="mongo1"
 write-concern="SAFE"
 >
 <cloud:mongo-options
 connections-per-host="..."
 max-wait-time="..."
 />
</cloud:mongo-db-factory>

Use when multiple
services are bound

Whether to wait
for writes to
complete

[]

[]

[

]

Monday, February 13, 12

Cross store persistence example

174

Monday, February 13, 12

Uses MySQL and MongoDB

175

@Entity
public class Customer {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 private String firstName;

 private String lastName;

 @RelatedDocument
 private SurveyInfo surveyInfo;

public class Survey {

 String question;

 String answer;

public class SurveyInfo {

 private List<Survey> questionsAndAnswers = new ArrayList<Survey>();

 public List<Survey> getQuestionsAndAnswers() {
 return questionsAndAnswers;
 }

Stored in MySQL

Stored in Mongo

Monday, February 13, 12

Cross store configuration

176

@Configuration
@ComponentScan(basePackageClasses = CrossStoreCustomerRepository.class)
@EnableTransactionManagement(mode = AdviceMode.ASPECTJ)
public class ServicesConfiguration {

 private String mongoDatabaseServiceName = "survey-mongo";
 private String mysqlDatabaseServiceName = "survey-mysql";

 @Bean
 public CloudEnvironment cloudEnvironment() {
 return new CloudEnvironment();
 }

 @Bean
 public MongoServiceInfo mongoServiceInfo() {
 return cloudEnvironment().getServiceInfo(mongoDatabaseServiceName, MongoServiceInfo.class);
 }

 @Bean
 public MongoDbFactory mongoDbFactory() {
 MongoServiceCreator mongoServiceCreator = new MongoServiceCreator();
 return mongoServiceCreator.createService(mongoServiceInfo());
 }

 @Bean
 public DataSource dataSource() {
 RdbmsServiceInfo rdbmsServiceInfo = cloudEnvironment().getServiceInfo(mysqlDatabaseServiceName, RdbmsServiceInfo.class);
 RdbmsServiceCreator rdbmsServiceCreator = new RdbmsServiceCreator();
 DataSource dataSource = rdbmsServiceCreator.createService(rdbmsServiceInfo);
 return dataSource;
 }
...

Monday, February 13, 12

Manifest for Cloud Foundry deployment

177

applications:
 target:
 name: xs-survey
 url: ${name}.${target-base}
 framework:
 name: spring
 info:
 mem: 512M
 description: Java SpringSource Spring Application
 exec:
 mem: 512M
 instances: 1
 services:
 survey-mongo:
 type: :mongodb
 survey-mysql:
 type: :mysql

Chris-Richardsons-Mac-Pro:cross-store cer$ vmc apps

+-------------+----+---------+---+----------------------------+
| Application | # | Health | URLS | Services |
+-------------+----+---------+---+----------------------------+
| xs-survey | 1 | RUNNING | xs-survey.cloudfoundry.com | survey-mysql, survey-mongo |
+-------------+----+---------+---+----------------------------+

Monday, February 13, 12

NoSQL and Caldecott

178

§Caldecott let’s you tunnel to a NoSQL service
§Use Redis CLI
• redis-cli
•Explore database, adhoc operations
• ...

§Use Mongo CLI etc
•Explore database, adhoc operations
•Mongo dump/restore
• ...

Monday, February 13, 12

NoSQL wrap up

§Cloud Foundry supports Mongo and Redis
§For some use cases, NoSQL databases offer some combination of:
•Higher scalability
•Higher performance
•Richer data models
•Schema less

§Spring Data simplifies the development of NoSQL applications

179

Cloud Foundry
+

Spring Data

=
Easy development

 and
deployment of

NoSQL applications

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
•Why messaging?
•Messaging with RabbitMQ and AMQP
•Using Spring Integration
•Cloud Foundry and RabbitMQ

§Wrap up

180

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
•Why messaging?
•Messaging with RabbitMQ and AMQP
•Using Spring Integration
•Cloud Foundry and RabbitMQ

§Wrap up

181

Monday, February 13, 12

Cloud Foundry provides
RabbitMQ - aaS

182

Monday, February 13, 12

But why messaging? Why RabbitMQ?

183

Application A Application B

RabbitMQ

Traditional application integration

Monday, February 13, 12

Application

But why messaging? Why RabbitMQ?

184

Service A Service B

RabbitMQ

•Essential component of our new scalable and fault tolerant architecture
• Integration mechanism for the services
•Enables services to discover each other

Service ...

Monday, February 13, 12

Let’s imagine you are building an e-
commerce application

185

Monday, February 13, 12

Widget
InventoryService

Accounting
Service

Shipping
Service

@Controller
StoreFront

Gadget
InventoryService

RDBMS

wgrus-monolithic.war

186

Monday, February 13, 12

It’s simple to develop but

§Lack of scalability
•Scale through replication
•Non-replicable component => nothing can be replicated
•Can’t scale different parts of the application differently

§Lack of deployability
•Deploy it all in one go
• Increased risk of something breaking

§Applications are brittle
•Store can’t accept orders unless all services are available
•Failure (e.g. memory leak) in one component can take down every other

§Monolingual
•Can’t use non-JVM server-side technologies: NodeJS, Rails,

187

Monday, February 13, 12

Decompose application into services
By noun or by verbs

188

Monday, February 13, 12

Shipping
Service

StoreFront

wgrus-store.war

Accounting
Service

wgrus-billing.war

wgrus-shipping.war

Widget
InventoryService

wgrus-inventory.war

Gadget
InventoryService

wgrus-inventory.war

MySQL

189

Synchronous

Spring
Remoting

Spring Web
Services

Monday, February 13, 12

Benefits and Drawbacks

§Benefits:
•Scale each service independently
•Deploy each service independently
•Mix JVM and non-JVM languages

§Drawbacks
•Application is still brittle

• Store can’t accept orders unless all services are available
• Failure (e.g. memory leak) in one component can take down every other

190

Monday, February 13, 12

Solution:
Asynchronous Architecture

191

Monday, February 13, 12

Shipping
Service

StoreFront

wgrus-store.war

Accounting
Service

wgrus-billing.war

wgrus-shipping.war

Widget
InventoryService

wgrus-inventory.war

Gadget
InventoryService

wgrus-inventory.war

MySQL

192

Message
Broker

Monday, February 13, 12

Benefits and Drawbacks

§Benefits:
•Scale each service independently
•Deploy each service independently
•Mix JVM and non-JVM languages
• Improved availability

• Front-end keeps working even when backend services are down
• Messaging broker can buffer traffic and smooth out spikes

§Drawbacks
•Yet another moving part
•Sometimes synchronous RPC is a better fit

193

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
•Why messaging?
•Messaging with RabbitMQ and AMQP
•Using Spring Integration
•Cloud Foundry and RabbitMQ

§Wrap up

194

Monday, February 13, 12

RabbitMQ – Messaging that Just Works

Robust
High-performance

Easy to use
AMQP LEADER

Monday, February 13, 12

Why AMQP?

17

A	
 Protocol,	
 not	
 an	
 API
•A defined set of
messaging capabilities
called the AMQ model
•A network wire-level
protocol, AMQP

On	
 commodity	
 hardware
•10-­‐25	
 thousand	
 messages	

per	
 second	
 is	
 rou>ne	
 *
•The	
 NIC	
 is	
 usually	
 the	

boDleneck

*	
 Non-­‐persistent	
 messages

Monday, February 13, 12

AMQP Architecture

20

café NA deliveries

queue

café deliveries

queue

café WW deliveries

queue

Monday, February 13, 12

AMQP Architecture

20

café NA deliveries

queue

café deliveries

queue

café WW deliveries

queue

Monday, February 13, 12

AMQP Architecture

20

café NA deliveries

queue

café deliveries

queue
M3M1 M2

M3M1 M2

café WW deliveries

queue
M3M1 M2

Monday, February 13, 12

AMQP Architecture

20

café NA deliveries

queue

café deliveries

queue

café WW deliveries

queue

Monday, February 13, 12

AMQP Architecture

19

Monday, February 13, 12

AMQP Architecture

19

new.order

queue

Monday, February 13, 12

AMQP Architecture

19

new.order

queue

new.order

binding

Monday, February 13, 12

AMQP Architecture

19

new.order

queue

new.order

binding

new.order

routing key

Monday, February 13, 12

AMQP Architecture

19

new.order

queue

new.order

binding

new.order

routing key

Monday, February 13, 12

AMQP Architecture

19

new.order

queue

new.order

binding

new.order

routing key

Monday, February 13, 12

AMQP Architecture

21

Monday, February 13, 12

AMQP Architecture

21

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

cold_drinks

queue

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

hot_drinks

queue

cold_drinks

queue

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

hot_drinks

queue

cold_drinks

queue

drink.*

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

hot_drinks

queue

cold_drinks

queue

drink.*

drink.cold

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

hot_drinks

queue

cold_drinks

queue

drink.*

drink.cold

drink.hot

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

hot_drinks

queue

cold_drinks

queue

drink.*

drink.cold

drink.hot

Message Routing Keys:
1.drink.hot
2.drink.cold
3.drink.warm

all_drinks

queue

Monday, February 13, 12

AMQP Architecture

21

hot_drinks

queue

cold_drinks

queue

1 2

2

3

1

drink.*

drink.cold

drink.hot

Message Routing Keys:
1.drink.hot
2.drink.cold
3.drink.warm

all_drinks

queue

Monday, February 13, 12

Spring AMQP

§Encapsulates low-level details
§Simplifies sending and receiving

of messages
Producer

Spring AMQP

AMQP

Amqp
Template

Consumer

Listener
Container

Monday, February 13, 12

@Component public class MessageSender {

 @Autowired
 private volatile AmqpTemplate amqpTemplate;

 public void send(String message) {
 this.amqpTemplate.convertAndSend(
 "myExchange", "some.routing.key", message);
 }

}

201

Sending AMQP messages

Monday, February 13, 12

Receiving AMQP messages

202

public class MyComponent {

 @Autowired
 private AmqpTemplate amqpTemplate;

 public void read() throws Exception {
 ...
 String value = amqpTemplate.receiveAndConvert("myQueueName");
 ...
 }

}

Monday, February 13, 12

Spring AMQP: SimpleMessageListenerContainer
l Asynchronous message receiver
l POJO handlers
l Handles re-connection and listener failure (rollback, redelivery)
l Message conversion and error handling strategies

203

<listener-container connection-factory="rabbitConnectionFactory">
 <listener ref="handler" method="handle" queue-names="my.queue">
</listener-container>

Monday, February 13, 12

Spring configuration

204

<rabbit:template id="rabbitTemplate"
 connection-factory="rabbitConnectionFactory"/>

<rabbit:connection-factory
 id="rabbitConnectionFactory"/>

Monday, February 13, 12

Spring AMQP is flexible and dynamic

BUT

It’s very low level

205

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
•Why messaging?
•Messaging with RabbitMQ and AMQP
•Using Spring Integration
•Cloud Foundry and RabbitMQ

§Wrap up

206

Monday, February 13, 12

Spring Integration

§Builds on Spring framework
§High-level of abstraction for building message

based applications
§ Implements EAI patterns
§Provides plumbing for exchanging messages

between application components
§Promotes loosely coupled components
§ Integrates with external messaging

infrastructure: JMS, AMQP, HTTP, Email, File
transfer

207

Monday, February 13, 12

Spring Integration concepts

§Message channel
•Virtual pipe connecting producer and consumer

§Message endpoints
•The filter of a pipes-and-filter architecture
•Read from and/or write to channel

§Endpoint types:
•Transformer
•Filter
•Router
•Splitter
•Aggregator
•ServiceActivator
• Inbound channel adapter - read from external source, writes to channel
•Outbound channel adapter - read from channel write to external destination

208

Monday, February 13, 12

Order
Service

Messaging
Gateway

Channel Service
Activator

Shipping
service

209

Example of reconfigurability - local

@Service
public class OrderServiceImpl {

@Autowired
private ShippingService shippingService;

public void placeOrder() {
String orderId = generateOrderId();
…
shippingService.shipOrder(orderId);
}

}

@Service
public class ShippingServiceImpl {

public void shipOrder(String orderId) {
 System.out.println("shipped order: " +
 orderId);
}

}

Monday, February 13, 12

Order
Service

Messaging
Gateway

Channel Service
Activator

Shipping
service

AMQP

RabbitMQ

AMQP Channel

210

Example of reconfigurability - distributed

Code unchanged in new deployment

Monday, February 13, 12

Using Spring Integration with the web
store application

211

Monday, February 13, 12

Shipping
Service

StoreFront

wgrus-store.war

Credit Service

wgrus-billing.war

wgrus-shipping.war

Widget
InventoryService

wgrus-inventory.war

Gadget
InventoryService

212

Spring Integration Logic

Monday, February 13, 12

orderChannel object to
JSON amqpOut

StoreUI

Message Endpoint AMQP

Store front flow

213

Monday, February 13, 12

AMQP inventory Json to
Object

credit check
enricher

inventory
encricher

inventory
AMQP Out AMQP

Credit
Service

credit check

credit check
service

activator

widget
inventory
service

inventory
router

gadget
inventory
service

Content Based
Router

Object to
JSON

Inventory flow

214

Monday, February 13, 12

AMQP shipping
order

channel

Json to
Object

Service
Activator

shipping
service

Shipping flow

215

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Building Java applications on Cloud Foundry
§Moving Spring applications to the Cloud
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
•Why messaging?
•Messaging with RabbitMQ and AMQP
•Using Spring Integration
•Cloud Foundry and RabbitMQ

§Wrap up

216

Monday, February 13, 12

Rabbit on Cloud Foundry

217

Monday, February 13, 12

Configuring a ConnectionFactory

218

<rabbit:template id="rabbitTemplate"
connection-factory="rabbitConnectionFactory"/>

<beans profile="default">
 ...
 <rabbit:connection-factory id="rabbitConnectionFactory"/>
</beans>

<beans profile="cloud">
 ...
 <cloud:rabbit-connection-factory id="rabbitConnectionFactory"/>
</beans>

Monday, February 13, 12

Using Caldecott with RabbitMQ

§Use for JUnit/Integration tests
§Run RabbitMQ tools

219

xxxxx

xxxxx

xxxxx

Monday, February 13, 12

Summary

§Modern applications need to have message-based architecture
§Spring Integration abstracts away the low-level aspects of messaging
§Cloud Foundry simplifies the development and deployment of

RabbitMQ-based applications

220

Monday, February 13, 12

Agenda

§Why Cloud? Why PaaS?
§ Introducing Cloud Foundry
§Cloud Foundry for Spring developers
§Developing NoSQL applications for Cloud Foundry
§Application integration with RabbitMQ and Spring AMQP
§Wrap Up

221

Monday, February 13, 12

Summary

§Cloud? Good.
§Cloud Foundry? Good.
§Spring? Good.
§Cloud Foundry and Spring is a match made in heaven

§Home work:
• Learn Spring: http://www.springframework.org
• Learn Spring Data http://www.springframework.org/spring-data
• sign up for (free) Cloud Foundry at http://www.cloudfoundry.com or

Download the Cloud Foundry Micro Cloud

222

Monday, February 13, 12

http://www.cloudfoundry.com
http://www.cloudfoundry.com
http://www.cloudfoundry.com
http://www.cloudfoundry.com
http://www.cloudfoundry.com
http://www.cloudfoundry.com

By The Way

223

Monday, February 13, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Questions?

@cloudfoundry @starbuxman @crichardson

www.cloudfoundry.com

Promo Code:

JFokus

Stop by
VMware
booth

Monday, February 13, 12

http://www.cloudfoundry.com
http://www.cloudfoundry.com

