
Building

Scalable,
Highly Concurrent &

Fault-Tolerant
Systems:

Lessons Learned

Jonas Bonér
CTO Typesafe

Twitter : @jboner

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

I will never use distributed transactions again

Lessons
Learned

through...

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

I will never use distributed transactions again

Lessons
Learned

through...

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

Agony

I will never use distributed transactions again

Lessons
Learned

through...

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again
I will never use distributed transactions again

Agony
and Pain
lots of

Pain

Agenda

• It’s All Trade-offs
• Go Concurrent
• Go Reactive
• Go Fault-Tolerant
• Go Distributed
• Go Big

It’s all
Trade-offs

Performance
vs

Scalability

Latency
vs

Throughput

Availability
vs

Consistency

Go Concurrent

Shared mutable state

Shared mutable state
Together with threads...

Shared mutable state

...leads to

Together with threads...

Shared mutable state

...code that is totally INDETERMINISTIC
...leads to

Together with threads...

Shared mutable state

...code that is totally INDETERMINISTIC

...and the root of all EVIL
...leads to

Together with threads...

Shared mutable state

...code that is totally INDETERMINISTIC

...and the root of all EVIL
...leads to

Together with threads...

Please, avoid it at all cost

Shared mutable state

...code that is totally INDETERMINISTIC

...and the root of all EVIL
...leads to

Together with threads...

Please, avoid it at all costUse IM
MUTABLE

state!!!

The problem with locks

• Locks do not compose
• Locks breaks encapsulation
• Taking too few locks
• Taking too many locks
• Taking the wrong locks
• Taking locks in the wrong order
• Error recovery is hard

You deserve better tools

• Dataflow Concurrency
• Actors
• Software Transactional Memory (STM)
• Agents

Dataflow Concurrency
• Deterministic
• Declarative
• Data-driven
• Threads are suspended until data is available
• Lazy & On-demand

• No difference between:
• Concurrent code
• Sequential code
• Examples: Akka & GPars

Actors

•Share NOTHING
•Isolated lightweight event-based processes
•Each actor has a mailbox (message queue)
•Communicates through asynchronous and
non-blocking message passing

•Location transparent (distributable)
•Examples: Akka & Erlang

• See the memory as a transactional dataset
• Similar to a DB: begin, commit, rollback (ACI)
• Transactions are retried upon collision
• Rolls back the memory on abort
• Transactions can nest and compose
• Use STM instead of abusing your database

with temporary storage of “stratch” data
• Examples: Haskell, Clojure & Scala

STM

• Reactive memory cells (STM Ref)
• Send a update function to the Agent, which

1. adds it to an (ordered) queue, to be
2. applied to the Agent asynchronously

• Reads are “free”, just dereferences the Ref
• Cooperates with STM
• Examples: Clojure & Akka

Agents

If we could start all over...

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

2. Add Indeterminism selectively - only where needed

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

2. Add Indeterminism selectively - only where needed

• Actor/Agent-based Programming

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

2. Add Indeterminism selectively - only where needed

• Actor/Agent-based Programming

3. Add Mutability selectively - only where needed

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

2. Add Indeterminism selectively - only where needed

• Actor/Agent-based Programming

3. Add Mutability selectively - only where needed

• Protected by Transactions (STM)

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

2. Add Indeterminism selectively - only where needed

• Actor/Agent-based Programming

3. Add Mutability selectively - only where needed

• Protected by Transactions (STM)

4. Finally - only if really needed

If we could start all over...
1. Start with a Deterministic, Declarative & Immutable core

• Logic & Functional Programming

• Dataflow

2. Add Indeterminism selectively - only where needed

• Actor/Agent-based Programming

3. Add Mutability selectively - only where needed

• Protected by Transactions (STM)

4. Finally - only if really needed

• Add Monitors (Locks) and explicit Threads

Go Reactive

Never block

• ...unless you really have to
• Blocking kills scalability (and performance)
• Never sit on resources you don’t use
• Use non-blocking IO
• Be reactive
• How?

Go Async
Design for reactive event-driven systems

1. Use asynchronous message passing
2. Use Iteratee-based IO
3. Use push not pull (or poll)
• Examples:

• Akka or Erlang actors

• Play’s reactive Iteratee IO

• Node.js or JavaScript Promises

• Server-Sent Events or WebSockets

• Scala’s Futures library

Go Fault-Tolerant

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed
• So you need to do all explicit error handling

WITHIN this single thread

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed
• So you need to do all explicit error handling

WITHIN this single thread
• To make things worse - errors do not

propagate between threads so there is NO
WAY OF EVEN FINDING OUT that
something have failed

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed
• So you need to do all explicit error handling

WITHIN this single thread
• To make things worse - errors do not

propagate between threads so there is NO
WAY OF EVEN FINDING OUT that
something have failed

• This leads to DEFENSIVE programming with:

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed
• So you need to do all explicit error handling

WITHIN this single thread
• To make things worse - errors do not

propagate between threads so there is NO
WAY OF EVEN FINDING OUT that
something have failed

• This leads to DEFENSIVE programming with:
• Error handling TANGLED with business logic

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed
• So you need to do all explicit error handling

WITHIN this single thread
• To make things worse - errors do not

propagate between threads so there is NO
WAY OF EVEN FINDING OUT that
something have failed

• This leads to DEFENSIVE programming with:
• Error handling TANGLED with business logic
• SCATTERED all over the code base

Failure Recovery in Java/C/C# etc.

• You are given a SINGLE thread of control
• If this thread blows up you are screwed
• So you need to do all explicit error handling

WITHIN this single thread
• To make things worse - errors do not

propagate between threads so there is NO
WAY OF EVEN FINDING OUT that
something have failed

• This leads to DEFENSIVE programming with:
• Error handling TANGLED with business logic
• SCATTERED all over the code base

Failure Recovery in Java/C/C# etc.

We can do

bette
r!!!

Just

Let It Crash

The right way
1. Isolated lightweight processes
2. Supervised processes

• Each running process has a supervising process
• Errors are sent to the supervisor (asynchronously)
• Supervisor manages the failure

• Same semantics local as remote

• For example the Actor Model solves it nicely

Go Distributed

Performance
vs

Scalability

How do I know if I have a
performance problem?

How do I know if I have a
performance problem?

If your system is
slow for a single user

How do I know if I have a
scalability problem?

How do I know if I have a
scalability problem?

If your system is
fast for a single user

but slow under heavy load

(Three) Misconceptions about
Reliable Distributed Computing

- Werner Vogels

1. Transparency is the ultimate goal
2. Automatic object replication is desirable
3. All replicas are equal and deterministic

Classic paper: A Note On Distributed Computing - Waldo et. al.

Transparent Distributed Computing
• Emulating Consistency and Shared

Memory in a distributed environment
• Distributed Objects

• “Sucks like an inverted hurricane” - Martin Fowler

• Distributed Transactions
• ...don’t get me started...

Fallacy 1

Fallacy 2
RPC

• Emulating synchronous blocking method
dispatch - across the network

• Ignores:
• Latency
• Partial failures
• General scalability concerns, caching etc.

• “Convenience over Correctness” - Steve Vinoski

Instead

Embrace the Network
Instead

and
 be

 do
ne

with
itUse

Asynchronous
Message
Passing

Delivery Semantics

• No guarantees
• At most once
• At least once
• Once and only once

Guaranteed Delivery

It’s all lies.

It’s all lies.

The network is inherently unreliable
and there is no such thing as 100%

guaranteed delivery

It’s all lies.

Guaranteed Delivery

Guaranteed Delivery
The question is what to guarantee

Guaranteed Delivery
The question is what to guarantee

1. The message is - sent out on the network?

Guaranteed Delivery
The question is what to guarantee

1. The message is - sent out on the network?

2. The message is - received by the receiver host’s NIC?

Guaranteed Delivery
The question is what to guarantee

1. The message is - sent out on the network?

2. The message is - received by the receiver host’s NIC?

3. The message is - put on the receiver’s queue?

Guaranteed Delivery
The question is what to guarantee

1. The message is - sent out on the network?

2. The message is - received by the receiver host’s NIC?

3. The message is - put on the receiver’s queue?

4. The message is - applied to the receiver?

Guaranteed Delivery
The question is what to guarantee

1. The message is - sent out on the network?

2. The message is - received by the receiver host’s NIC?

3. The message is - put on the receiver’s queue?

4. The message is - applied to the receiver?

5. The message is - starting to be processed by the receiver?

Guaranteed Delivery
The question is what to guarantee

1. The message is - sent out on the network?

2. The message is - received by the receiver host’s NIC?

3. The message is - put on the receiver’s queue?

4. The message is - applied to the receiver?

5. The message is - starting to be processed by the receiver?

6. The message is - has completed processing by the receiver?

Ok, then what to do?
1. Start with 0 guarantees (0 additional cost)
2. Add the guarantees you need - one by one

Ok, then what to do?
1. Start with 0 guarantees (0 additional cost)
2. Add the guarantees you need - one by one

Different USE-CASES
 Different GUARANTEES

 Different COSTS

Ok, then what to do?
1. Start with 0 guarantees (0 additional cost)
2. Add the guarantees you need - one by one

Different USE-CASES
 Different GUARANTEES

 Different COSTS
For each additional guarantee you add you will either :

• decrease performance, throughput or scalability

• increase latency

Just

Just

Use ACKing

Just

Use ACKing
and be done with it

Latency
vs

Throughput

You should strive for
maximal throughput

with
acceptable latency

Go Big

Go Big
Data

Big Data
Imperative OO programming doesn't cut it

• Object-Mathematics Impedance Mismatch
• We need functional processing, transformations etc.
• Examples: Spark, Crunch/Scrunch, Cascading, Cascalog,

Scalding, Scala Parallel Collections
• Hadoop have been called the:

• “Assembly language of MapReduce programming”

• “EJB of our time”

Batch processing doesn't cut it

• Ala Hadoop
• We need real-time data processing
• Examples: Spark, Storm, S4 etc.
• Watch“Why Big Data Needs To Be Functional”

by Dean Wampler

Big Data

Go Big
DB

When is
a RDBMS

not
good enough?

Scaling reads
to a RDBMS

is hard

Scaling writes
to a RDBMS

is impossible

Do we
really need
a RDBMS?

Do we
really need
a RDBMS?
Sometimes...

Do we
really need
a RDBMS?

Do we
really need
a RDBMS?

But many times we don’t

Atomic

Consistent

Isolated

Durable

Availability
vs

Consistency

Brewer’s

CAP
theorem

You can only pick 2

 Consistency

 Availability

 Partition tolerance
At a given point in time

Centralized system
• In a centralized system (RDBMS etc.)

we don’t have network partitions,
e.g. P in CAP

• So you get both:

Consistency

Availability

Distributed system
• In a distributed (scalable) system

we will have network partitions,
e.g. P in CAP

• So you get to only pick one:

 Consistency

 Availability

Basically Available

Soft state

Eventually consistent

Think about your data

• When do you need ACID?
• When is Eventual Consistency a better fit?
• Different kinds of data has different needs
• You need full consistency less than you think

Then think again

How fast is fast enough?
• Never guess: Measure, measure and measure
• Start by defining a baseline

• Where are we now?

• Define what is “good enough” - i.e. SLAs
• Where do we want to go?
• When are we done?

• Beware of micro-benchmarks

• Never guess: Measure, measure and measure
• Start by defining a baseline

• Where are we now?

• Define what is “good enough” - i.e. SLAs
• Where do we want to go?
• When are we done?

• Beware of micro-benchmarks

...or, when can we go for a beer?

SO

GO

...now home and build yourself
Scalable,

Highly Concurrent &
Fault-Tolerant

Systems

Thank You
Email: jonas@typesafe.com
Web: typesafe.com
Twitter : @jboner

mailto:jonas@typesafe.com
mailto:jonas@typesafe.com

