
FUNCTIONAL
GROOVY
ANDRES ALMIRAY
CANOO ENGINEERING A.G.
@AALMIRAY

ABOUT THE SPEAKER
Java developer since the beginning
True believer in open source
Groovy committer since 2007

Project lead of the Griffon framework

Currently working for

FUNCTIONAL
GROOVY,
ARE YOU
KIDDING ME?

GROOVY IS NOT
HASKELL
 RUSSEL WINDER

CLOSURES == FUNCTIONS
Closures are functions (i.e, blocks of code) with an
environment containing a binding for all free variables of the
function

CLOSURES == FUNCTIONS
Closures are NOT side effect free by design

CLOSURES: PARAMETERS (1)
Parameter types may be omitted if type information is not
needed

CLOSURES: PARAMETERS (2)
Parameters may have default values

NOTE: Default values must be defined from right to left

CLOSURES: DEFAULT
PARAMETER
Closures may have a default parameter named it

CLOSURES LEAD TO …
Partial Evaluation
Composition
Memoization
Tail calls
Iterators
Streams

PARTIAL EVALUATION (1)
Currying creates a new closure with fixed parameters, left to
right

PARTIAL EVALUATION (2)
Currying may be applied right to left too, even on an arbitrary
index

COMPOSITION (1)
Closures may be composed (left to right) using the >>
operator

COMPOSITION (2)
Closures may be composed (right to left) using the <<
operator

MEMOIZATION
Cache computed values for increased performance

TAIL CALLS (1)
Recursive closures may use Tail Calls thanks to trampoline()

TAIL CALLS (2)
Apply @TailRecursive on methods

https://github.com/jlink/tailrec/

ITERATORS (1)

ITERATORS (2)
p

ITERATORS

OBJECTS AS PARTIAL EVALS
Any class may implement the call() method, enabling implicit
evaluation

METHODS AS CLOSURES
Any method may be transformed to a Closure using the .&
operator

STREAMS (1)
Lazy generators. Extension module created by @tim_yates

http://timyates.github.com/groovy-stream/

STREAMS (2)
Groovy is Java friendly. Usa any Java library such as
functional-java

IMMUTABILITY
The @Immutable AST transformation makes writing
immutable classes trivial

GPARS
 http://gpars.codehaus.org/
 Concurrent collection processing
 Composable asynchronous functions

 Fork/Join abstraction

 Actor programming model

 Dataflow concurrency constructs

 CSP
 Agent - an thread-safe reference to mutable state

PARALLEL COLLECTIONS
Gpars enhances JDK/GDK collections with parallel execution
enabled versions

RESOURCES
•  http://pragprog.com/magazines/2013-01/using-

memoization-in-groovy
•  http://www.ibm.com/developerworks/views/java/

libraryview.jsp?search_by=functional+thinking:
•  https://github.com/jlink/tailrec/

•  http://timyates.github.com/groovy-stream/

•  http://www.jroller.com/vaclav/

•  http://gpars.codehaus.org/

•  http://www.slideshare.net/arturoherrero/functional-
programming-with-groovy

Q & A

THANK
YOU!

