
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

Lambda Expressions in
Java
Simon Ritter
Java Technology Evangelist
Twitter: @speakjava

With thanks to Brian Goetz

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to outline our general product
direction. It is intended for information purposes only, and may
not be incorporated into any contract. It is not a commitment to
deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole
discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

A Bit Of Background

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

1930/40’s 1950/60’s 1970/80’s

Images – wikipedia / bio pages

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Computing Today
§ Multicore is now the default

–  Moore’s law means more cores, not faster clockspeed
§ We need to make writing parallel code easier
§ All components of the Java SE platform are adapting

–  Language, libraries, VM

360 Cores
2.8 TB RAM
960 GB Flash
InfiniBand
…

Herb Sutter
http://www.gotw.ca/publications/concurrency-ddj.htm
http://drdobbs.com/high-performance-computing/225402247
http://drdobbs.com/high-performance-computing/219200099

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Data Parallelism Solutions

Parallel
Collection
Libraries

Work Queues and
Thread Pools

Map/Reduce

Actors/Message
Passing Software

Transactional
Memory

GPU Based
Computation

Fork-Join
Framework

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013...

1.4 5.0 6 7 8
java.lang.Thread

java.util.concurrent
(jsr166)

Fork/Join Framework
(jsr166y)

Project Lambda Concurrency in Java

Phasers, etc
(jsr166)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

Goals For Better Parallelism In Java

§ Easy-to-use parallel libraries
–  Libraries can hide a host of complex concerns

§  task scheduling, thread management, load balancing, etc

§ Reduce conceptual and syntactic gap between serial and parallel
expressions of the same computation

–  Currently serial code and parallel code for a given computation are very
different

§  Fork-join (added in Java SE 7) is a good start, but not enough

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

It’s All About The Libraries

§ Most of the time, we should prefer to evolve the programming model
through libraries

–  Time to market – can evolve libraries faster than language
–  Decentralized – more library developers than language developers
–  Risk – easier to change libraries, more practical to experiment
–  Impact – language changes require coordinated changes to multiple

compilers, IDEs, and other tools

§ But sometimes we reach the limits of what is practical to express in
libraries, and need some help from the language

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

Bringing Lambdas To Java

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

The Problem: External Iteration
List<Student> students = ...

double highestScore = 0.0;

for (Student s : students) {

 if (s.gradYear == 2011) {

 if (s.score > highestScore) {

 highestScore = s.score;

 }

 }

}

•  Client controls iteration
•  Inherently serial: iterate from

beginning to end
•  Not thread-safe because

business logic is stateful
(mutable accumulator
variable)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

Internal Iteration With Inner Classes

§  Iteraction, filtering and
accumulation are handled by the
library

§  Not inherently serial – traversal
may be done in parallel

§  Traversal may be done lazily – so
one pass, rather than three

§  Thread safe – client logic is
stateless

§  High barrier to use
–  Syntactically ugly

More Functional, Fluent and Monad Like

SomeList<Student> students = ...

double highestScore =

 students.filter(new Predicate<Student>() {

 public boolean op(Student s) {

 return s.getGradYear() == 2011;

 }

 }).map(new Mapper<Student,Double>() {

 public Double extract(Student s) {

 return s.getScore();

 }

 }).max();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Internal Iteration With Lambdas
SomeList<Student> students = ...

double highestScore =

 students.filter(Student s -> s.getGradYear() == 2011)

 .map(Student s -> s.getScore())

 .max();

•  More readable
•  More abstract
•  Less error-prone
•  No reliance on mutable state
•  Easier to make parallel

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Lambda Expressions

§ Lambda expressions are anonymous functions
–  Like a method, has a typed argument list, a return type, a set of thrown

exceptions, and a body

Some Details

double highestScore =
 students.filter(Student s -> s.getGradYear() == 2011)
 .map(Student s -> s.getScore())
 .max();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

Lambda Expression Types

•  Single-method interfaces used extensively to represent functions and
callbacks
–  Definition: a functional interface is an interface with one method (SAM)
–  Functional interfaces are identified structurally
–  The type of a lambda expression will be a functional interface
 interface Comparator<T> { boolean compare(T x, T y); }
 interface FileFilter { boolean accept(File x); }
 interface DirectoryStream.Filter<T> { boolean accept(T x); }
 interface Runnable { void run(); }
 interface ActionListener { void actionPerformed(…); }
 interface Callable<T> { T call(); }

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

Target Typing
§  A lambda expression is a way to create an instance of a functional interface

–  Which functional interface is inferred from the context
–  Works both in assignment and method invocation contexts

§  Can use casts if needed to resolve ambiguity

Comparator<String> c = new Comparator<String>() {
 public int compare(String x, String y) {
 return x.length() - y.length();
 }
};

Comparator<String> c = (String x, String y) -> x.length() - y.length();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

Local Variable Capture

•  Lambda expressions can refer to effectively final local variables from
the enclosing scope

•  Effectively final means that the variable meets the requirements for final
variables (e.g., assigned once), even if not explicitly declared final

•  This is a form of type inference

void expire(File root, long before) {
 ...
 root.listFiles(File p -> p.lastModified() <= before);

 ...
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

Lexical Scoping

•  The meaning of names are the same inside the lambda as outside
•  A ‘this’ reference – refers to the enclosing object, not the lambda itself
•  Think of ‘this’ as a final predefined local

class SessionManager {
 long before = ...;

 void expire(File root) {
 ...
 // refers to ‘this.before’, just like outside the lambda
 root.listFiles(File p -> checkExpiry(p.lastModified(), before));
 }

 boolean checkExpiry(long time, long expiry) { ... }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

Type Inferrence

§ Compiler can often infer parameter types in lambda expression

§  Inferrence based on the target functional interface’s method signature
§ Fully statically typed (no dynamic typing sneaking in)

–  More typing with less typing

Collections.sort(ls, (String x, String y) -> x.length() - y.length());

Collections.sort(ls, (x, y) -> x.length() - y.length());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

Method References

•  Method references let us reuse a method as a lambda expression

FileFilter x = (File f) -> f.canRead();

FileFilter x = File::canRead;

FileFilter x = new FileFilter() {
 public boolean accept(File f) {
 return f.canRead();
 }
};

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

Putting it all together

•  Make common idioms more expressive, reliable, and compact

With a little help from the libraries

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {

 return x.getLastName().compareTo(y.getLastName());

 }

});

Collections.sort(people, (Person x, Person y) ->
 x.getLastName().compareTo(y.getLastName()) });
Collections.sort(people,
 comparing(Person p -> p.getLastName()));
Collections.sort(people, comparing(Person::getLastName)); people.sort(comparing(Person::getLastName));

More concise
More abstract
More reuse
More object-oriented

Collections.sort(people,
 comparing(p -> p.getLastName()));

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Lambda Expressions In Java

§ Developers primary tool for computing over aggregates is the for loop
–  Inherently serial
–  We need internal iteration

§ Useful for many libraries, serial and parallel
§ Adding Lambda expressions to Java is no longer a radical idea

Advantages

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Library Evolution

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Library Evolution

•  Adding lambda expressions is a big language change
•  If Java had them from day one, the APIs would definitely look different
•  Adding lambda expressions makes our aging APIs show their age even

more
§ Most important APIs (Collections) are based on interfaces

•  How to extend an interface without breaking backwards compatability
•  Adding lamabda expressions to Java, but not upgrading the APIs to

use them, would be silly
•  Therefore we also need better mechanisms for library evolution

The Real Challenge

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Library Evolution Goal
§ Requirement: aggregate operations on collections

–  New methods on Collections that allow for bulk operations
–  Examples: filter, map, reduce, forEach, sort
–  These can run in parallel (return Stream object)

§ This is problematic

–  Can’t add new methods to interfaces without modifying all implementations
–  Can’t necessarily find or control all implementations

int heaviestBlueBlock =
 blocks.filter(b -> b.getColor() == BLUE)
 .map(Block::getWeight)
 .reduce(0, Integer::max);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

API Evolution Is A First-Class Problem

•  Interfaces are a double-edged sword
–  Once published, cannot add to them without breaking existing implementations

•  Fundamental problem: can’t evolve interface-based APIs
–  The older an API gets, the more obvious the decay
–  We’re a victim of our own success; Java has lots of old APIs
–  Lots of bad choices here

§  Let the API stagnate
§  Try and replace it in entirety – every few years!
§  Nail bags on the side (e.g., Collections.sort())

•  Key Principle: burden of API evolution should fall to implementors, not users
•  Solutions that require users to permanently cruft up their code to use new features are

undesirable

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Solution: Virtual Extension Methods

•  Specified in the interface
•  From the caller’s perspective, just an ordinary interface method
•  List class provides a default implementation

•  Default is only used when implementation classes do not provide a body
for the extension method

•  Implementation classes can provide a better version, or not
§ Drawback: requires VM support

AKA Defender Methods

interface List<T> {
 void sort(Comparator<? super T> cmp)
 default { Collections.sort(this, cmp); };
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Virtual Extension Methods

•  Err, isn’t this implementing multiple inheritance for Java?
•  Yes, but Java already has multiple inheritance of types
•  This adds multiple inheritance of behavior too
•  But not state, which is where most of the trouble is
•  Though can still be a source of complexity due to separate compilation and

dynamic linking

Stop right there!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

Compatibility Goals

•  Extension methods are about being able to compatibly evolve APIs
•  Motivated by having APIs in serious need of evolution

•  Compatibility has multiple faces
•  Source compatibility
•  Binary compatibility

•  Primary concern is adding new methods with defaults to existing interfaces
•  Without necessarily recompiling the implementation class

•  Secondary concerns
•  Adding defaults to existing methods
•  Changing defaults on existing extension methods

•  Removals of most kinds are unlikely to be compatible

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

Lambda Implementation
(Looking under the hood)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

Lambda Implementation Approaches

§ A lambda statement by definition can always be replaced by a single
abstract method type

§ Therefore there are several possible approaches to implementation
–  Desugar to an anonymous inner class
–  Use method handles
–  Use dynamic proxies
–  Use invokedynamic
–  Others

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Anonymous Inner Class

§  Capture == invoke constructor
§  One class per lambda expression (not nice)
§  Burdens lambdas with identity
§  No improvement in performance over current idiom

Direct Compiler Translation
s -> s.getGradYear() == 2011

class StudentReduce$1 implements Predicate<Student> {
 public boolean apply(Student s) {
 return (s.getGradYear() == 2011);
 }
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Translate Directly To Method Handles

§ Compiler converts lambda body to a static method
–  Variable capture adds parameters to method signature
–  Capture == take method reference and curry the captured arguments
–  Invocation == MethodHandle.invoke

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

Translation Options

§ Whatever translation is used is not just an implementation, but
becomes a binary specification

–  Backwards binary compatability is important
–  Is the MethodHandle API ready to become a permanent binary

specification
–  Performance of raw method handles compared to anonymous inner

classes

Issues

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 36

More Translation Options

§ Start with inner classes, switch to method handles later
–  Older compiled classes would still have inner classes
–  Java has never had “recomile your code for better performance”
–  We don’t want to start now

§ We need a fixed solution
–  Old technology is bad
–  New technology is not mature enough
–  What to do?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 37

Invokedynamic

§ Delay the translation strategy to runtime
§  Invokedynamic embeds a recipe for constructing a lambda at the

capture site
–  A declerative recipe, not an imperative recipe
–  Static bootstrap code: lambda meta-factory
–  At first capture a strategy is chosen and the call site linked
–  Subsequent captures use the method handle and bypass the slow path
–  Added bonus: stateless lambdas translate to static loads

§  Meta-factory returns reference to single instance

Not just for dynamically typed languages

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 38

Lambda Performance Costs

§ Linkage cost
§ Capture cost
§  Invocation cost

§ The key cost to optimise is the invocation cost

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 39

Code Generation Strategy

§ All lambda definitions are converted to static methods
–  For non-capturing lambdas the lambda signature matches the SAM

signature exactly

–  Translated to Predicate<Student> becomes:
s -> s.getGradYear() == 2011

static boolean lambda$1(Student s) {
 return s.getGradYear() == 2011;
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 40

Code Generation Strategy

§ For lambdas that capture variables from the enclosing context, these
are prepended to the argument list

–  Only effectively final variables can be captured
–  Freely copy variables at point of capture

–  When translated to Predicate<String>:
s -> s.getGradYear() == tagetYear

static boolean lambda$1(int targetYear, Student s) {
 return s.getGradYear() == targetYear;
}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 41

Code Generation Strategy

§ At point of lambda capture compiler emits an invokedynamic call to
create SAM (lambda factory)

–  Call arguments are captured variables (if any)
–  Bootstrap is method in language runtime (meta-factory)
–  Static arguments identify properties of the lambda and SAM

–  Becomes
list.filter(s -> s.getGradYear() == tagetYear)

list.filter(indy[bootstrapmethod=metafactory, args=…](targetYear));

Static arguments Dynamic arguments

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 42

Runtime Translation Strategies

§ Generate inner class dynamically
–  Same class that would be created by the compiler, bu generated at runtime
–  Probable initial strategy before optimisation

§ generate per-SAM wrapper class
–  One per SAM type, not one per lambda expression
–  Use method handles for invocation
–  Use ClassValue to cache wrapper for SAM

§ Use dynamic proxies
§ Use MethodHandleProxies.asInterfaceInstance
§ Use a VM private API to build object from scratch

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 43

Conclusions

§  Java needs lambda statements for multiple reasons
–  Significant improvements in existing libraries are required
–  Replacing all the libraries is a non-starter
–  Compatibly evolving interface-based APIs has historically been a problem

§ Require a mechanism for interface evolution
–  Solution: virtual extension methods
–  Which is both a language and a VM feature
–  And which is pretty useful for other things too

§  Java SE 8 evolves the language, libraries, and VM together

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 44

