
Implementing and Optimizing
Dynamic Languages on the JVM	

Marcus Lagergren	

“Runtime Futurist”	

Oracle	

@lagergren	

2	

Legal Slide

"THE FOLLOWING IS INTENDED TO OUTLINE OUR
GENERAL PRODUCT DIRECTION. IT IS INTENDED FOR
INFORMATION PURPOSES ONLY, AND MAY NOT BE
INCORPORATED INTO ANY CONTRACT. IT IS NOT A
COMMITMENT TO DELIVER ANY MATERIAL, CODE, OR
FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON IN
MAKING PURCHASING DECISION. THE DEVELOPMENT,
RELEASE, AND TIMING OF ANY FEATURES OR
FUNCTIONALITY DESCRIBED FOR ORACLE'S PRODUCTS
REMAINS AT THE SOLE DISCRETION OF ORACLE."	

3	

Who am I?

■  Computer scientist	

■  JRockit founder 	

■  Acquired by BEA, acquired by Oracle. Not likely to be acquired again.	

■  Currently in the Java language team	

■  Low level guy	

■  Compiler architect, virtualization OS hacker, hardware stuff	

■  High level guy	

■  Tech evangelism, member of various program committees, supervisor
of thesis students etc.	

■  Should sleep more	

4	

Agenda

■  Background	

■  invokedynamic bytecodes and having the JVM do something fast with
them	

■  Dynamic languages on the JVM	

■  How to implement them	

■  The Nashorn Project	

■  Future directions (also in the JVM)	

■  Follow my struggle on Twitter: @lagergren	

5	

What do I Want?

Show you that dynamic languages are
indeed feasible to implement on top of the

JVM.	

6	

What do I Want?

	

No really, that is all ;-)	

7	

What to take with you from this talk

Abstract and main message	

■  Sell the JVM as a multi language platform	

■  The runtime gets you a lot for free	

■  Memory Management	

■  Code Optimizations	

■  JSR-223 – Java Pluggability	

■  Performance	

■  “Decent” and rapidly getting better in the near future	

8	

invokedynamic and
java.lang.invoke

A new bytecode, the libraries
around it and its applications	

9	

Invokedynamic

Introduction	

■  First time a new bytecode was introduced in the history of the JVM
specification	

■  A new type of call	

■  Previously: invokestatic, invokevirtual, invoke-
interface and invokespecial.	

■  But more than that…	

10	

Invokedynamic

Introduction	

■  Along with its support framework, it may be roughly thought of as a
function pointer	

■  A way to do a call without the customary Java-language checks	

■  Enables completely custom linkage	

■  Essential if you want to hotswap method call targets	

■  Not something that javac will spit out	

■  At least not currently. Lambdas will probably use it.	

■  First and foremost something you generate yourself when you weave
bytecode for a dynamic language	

11	

calls	

	

Bootstrap Method	

invokedynamic
bytecode	

Bootstrap Method	

java.lang.invoke.CallSite

Target (java.lang.invoke.
MethodHandle)

contains	

	

	

	

returns	

	

	

	

12	

Invokedynamic

java.lang.invoke.CallSite	

■  The concept of a CallSite	

■  One invokedynamic per CallSite	

■  Returned by the bootstrap call	

■  The holder for a a MethodHandle

■  The MethodHandle is the target	

■  Target may be mutable or not	

■  getTarget / setTarget

13	

Invokedynamic

java.lang.invoke.CallSite	

■  The concept of a CallSite	

■  One invokedynamic per CallSite	

■  Returned by the bootstrap call	

■  The holder for a a MethodHandle

■  The MethodHandle is the target	

■  Target may be mutable or not	

■  getTarget / setTarget

 20: invokedynamic #97,0
// InvokeDynamic #0:”func”:(Ljava/lang/Object;
 Ljava/lang/Object;)V

public static CallSite bootstrap(
 final MethodHandles.Lookup lookup,

 final String name,
 final MethodType type,
 Object… callsiteSpecificArgs) {

 MethodHandle target = f(
 name,
 callSiteSpecificArgs);

 // do stuff
 CallSite cs = new MutableCallSite(target);
 // do stuff

 return cs;
}

14	

Invokedynamic

java.lang.invoke.MethodHandle	

■  MethodHandle concept: 	

■  “This is your function pointer”	

 MethodType mt = MethodType.methodType(String.class, char.class, char.class);
 MethodHandle mh = lookup.findVirtual(String.class, "replace", mt);

 String s = (String)mh.invokeExact("daddy", 'd', 'n');

 assert "nanny".equals(s) : s;

15	

Invokedynamic

java.lang.invoke.MethodHandle	

■  MethodHandle concept: 	

■  “This is your function pointer”	

■  Logic may be woven into it	

■  Guards: c = if (guard) a(); else b();

■  Parameter transforms/bindings	

MethodHandle add =
 MethodHandles.guardWithTest(
 isInteger,
 addInt
 addDouble);

16	

Invokedynamic

java.lang.invoke.MethodHandle	

■  MethodHandle concept: 	

■  “This is your function pointer”	

■  Logic may be woven into it	

■  Guards: c = if (guard) a(); else b();

■  Parameter transforms/bindings	

■  SwitchPoints	

■  Function of 2 MethodHandles, a and b

■  Invalidation: rewrite CallSite a to b	

MethodHandle add =
 MethodHandles.guardWithTest(
 isInteger,
 addInt
 addDouble);

SwitchPoint sp = new SwitchPoint();
MethodHandle add = sp.guardWithTest(
 addInt,
 addDouble);

// do stuff

if (notInts()) {
 sp.invalidate();

}

17	

Invokedynamic

Performance of invokedynamic on the JVM	

■  What about performance?	

■  The JVM knows a callsite target and can inline it	

■  No strange workaround machinery involved	

■  Standard adaptive runtime assumptions, e.g. “guard taken”	

■  Superior performance	

■  At least in theory	

■  If you, for example, change CallSite targets too many times, you will
certainly be punished for it by the JVM deoptimizing your code	

18	

Implementing Dynamic Languages
on the JVM

19	

Dynamic languages on the JVM

Hows and whys?	

■  I want to implement a dynamic language on the JVM	

■  Bytecode is already platform independent	

■  So what’s the problem?	

20	

Dynamic languages on the JVM

Hows and whys?	

■  I want to implement a dynamic language on the JVM	

■  Bytecode is already platform independent	

■  So what’s the problem?	

■  [don’t get me started on bytecode]	

21	

Dynamic languages on the JVM

Hows and whys?	

■  I want to implement a dynamic language on the JVM	

■  Bytecode is already platform independent	

■  So what’s the problem?	

■  [don’t get me started on bytecode]	

■  Rewriting callsites – changing assumptions	

22	

Dynamic languages on the JVM

Hows and whys?	

■  I want to implement a dynamic language on the JVM	

■  Bytecode is already platform independent	

■  So what’s the problem?	

■  [don’t get me started on bytecode]	

■  Rewriting callsites – changing assumptions	

■  But aside from that, the big problem is types!	

23	

Dynamic languages on the JVM

The problem with changing assumptions	

■  Assumptions may change at runtime to a much larger extent than typically
is the case in a Java program	

■  What? You deleted a field? 	

■  Then I need to change where this getter goes. 	

■  And all places who assume the object layout has more fields need to
update 	

24	

Dynamic languages on the JVM

The problem with changing assumptions	

■  Assumptions may change at runtime to a much larger extent than typically
is the case in a Java program	

■  What? You deleted a field? 	

■  Then I need to change where this getter goes. 	

■  And all places who assume the object layout has more fields need to
update 	

■  What? You redefined Math.sin to always return 17?	

25	

Dynamic languages on the JVM
The problem with changing assumptions	

■  Assumptions may change at runtime to a much larger extent than typically
is the case in a Java program	

■  What? You deleted a field? 	

■  Then I need to change where this getter goes. 	

■  And all places who assume the object layout has more fields need to
update 	

■  What? You redefined Math.sin to always return 17?	

■  What? You set func.constructor to 3? You are an idiot, but …
OK then… 	

26	

Dynamic languages on the JVM
The problem with weak types	

■  Consider this Java method	

 int sum(int a, int b) {
 return a + b;
 }

27	

Dynamic languages on the JVM
The problem with weak types	

■  Consider this Java method	

 int sum(int a, int b) {
 return a + b;
 }

iload_1
iload_2
iadd
ireturn

■  In Java, int types are known at compile time	

■  If you want to compile a double add, go somewhere else	

28	

Dynamic languages on the JVM
The problem with weak types	

■  Consider instead this JavaScript function	

 function sum(a, b) {
 return a + b;
 }

29	

Dynamic languages on the JVM
The problem with weak types	

■  Consider instead this JavaScript function	

 function sum(a, b) {
 return a + b;
 }

???
???
???
???

■  Not sure… a and b are something… that can be added.	

■  The + operator does a large number of horrible things.	

■  Might even not commute if we are dealing with e.g. Strings here.	

30	

Dynamic languages on the JVM
ECMA 262 – The addition operator	

31	

Dynamic languages on the JVM

The problem with weak types	

■  Let’s break it down a bit	

■  In JavaScript, a and b may start out as ints that fit in 32 bits	

■  But the addition may overflow and turn the result into a long

■  … or a double

■  A JavaScript “number” is a somewhat fuzzy concept to the JVM	

■  True for e.g. Ruby as well	

■  Type inference at compile time is way too weak	

32	

Dynamic languages on the JVM

GAMBLE!	

■  Remember the axiom of adaptive runtime behavior: GAMBLE!	

■  The bad slow stuff probably doesn’t happen	

■  If we were wrong and it does, take the penalty THEN, not now.	

■  Pseudo Java – just a thought pattern	

function sum(a, b) {
 try {
 int sum = (Integer)a + (Integer)b;
 checkIntOverflow(a, b, sum);
 return sum;

 } catch (OverFlowException | ClassCastException e) {
 return sumDoubles(a, b);
 }
}

33	

Dynamic languages on the JVM

GAMBLE!	

■  Type specialization is the key	

■  The previous example was specialization without involving the Java 7+
mechanisms	

■  Even more generic:	

 final MethodHandle sumHandle = MethodHandles.guardWithTest(
 intsAndNotOverflow,
 sumInts,
 sumDoubles);

 function sum(a, b) {
 return sumHandle(a, b);

 }

34	

Dynamic languages on the JVM

GAMBLE!	

■  We can use other mechanisms than guards too	

■  Rewrite the target MethodHandle on ClassCastException

■  SwitchPoints
■  Approach can be extended to Strings and other objects	

■  But the compile time types should be used if they ARE available	

■  Let’s ignore integer overflows for now	

■  Primitive number to object is another common scenario	

■  Combine runtime analysis and invalidation with static types from the
JavaScript compiler	

35	

Dynamic languages on the JVM

Add a pinch of static analysis	

 a = 4711.17;
 b = 17.4711;
 res *= sum(a, b);

 //a, b known doubles
 //result known double

36	

Dynamic languages on the JVM

Add a pinch of static analysis	

 a = 4711.17;
 b = 17.4711;
 res *= sum(a, b);

 //a, b known doubles
 //result known double

 //generic sum
 sum(OO)O:
 aload_1
 aload_2
 invokestatic JSRuntime.add(OO)
 areturn

37	

Dynamic languages on the JVM

Add a pinch of static analysis	

 a = 4711.17;
 b = 17.4711;
 res *= sum(a, b);

 //a, b known doubles
 //result known double

 //generic sum
 sum(OO)O:
 aload_1
 aload_2
 invokestatic JSRuntime.add(OO)
 areturn

 ldc 4711.17 invokedynamic sum(OO)O
 dstore 1 invoke JSRuntime.toDouble(O)
 ldc 17.4711 dload 3
 dstore 2 dmul
 dload 1 dstore 3
 invoke JSRuntime.toObject(O)
 dload 2
 invoke JSRuntime.toObject(O))

38	

Dynamic languages on the JVM

Specialize the sum function for this callsite	

■  Doubles would still run faster than semantically equivalent objects	

■  Nice and short – just 4 bytecodes, no calls into the runtime	

 // specialized double sum
 sum(DD)D:
 dload_1
 dload_2
 dadd
 dreturn

39	

Dynamic languages on the JVM

But what if it’s overwritten?	

■  In dynamic languages, anything can happen	

■  What if the program does this between callsite executions?	

 sum = function(a, b) {
 return a + ‘string’ + b;

 }
)

■  Use a SwitchPoint and generate a revert stub. Doesn’t need to be explicit
bytecode	

■  The CallSite will now point to the revert stub and not the double
specialization	

40	

Dynamic languages on the JVM

None of the revert stub needs to be generated as actual explicit bytecode.
MethodHandle combinators suffice.	

sum(DD)D:
 dload_1
 dload_2
 dadd
 dreturn

sum_revert(DD)D: //hope this doesn’t happen
 dload_1
 invokestatic JSRuntime.toObject(D)
 dload_2
 invokestatic JSRuntime.toObject(D)
 invokedynamic sum(OO)O
 invokestatic JSRuntime.toNumber(O)
 dreturn

41	

Dynamic languages on the JVM
Result	

ldc 4711.17
dstore 1
ldc 17.4711
dstore 2
dload 1
invoke JSRuntime.toObject(O)
dload 2
invoke JSRuntime.toObject(O)
invokedynamic sum(OO)O
invoke JSRuntime.toDouble(O)
dload 3
dmul
dstore 3

42	

Dynamic languages on the JVM
Result	

ldc 4711.17
dstore 1
ldc 17.4711
dstore 2
dload 1
invoke JSRuntime.toObject(O)
dload 2
invoke JSRuntime.toObject(O)
invokedynamic sum(OO)O
invoke JSRuntime.toDouble(O)
dload 3
dmul
dstore 3

ldc 4711.17
dstore 1
ldc 17.4711
dstore 2
dload 1

dload 2
//likely inlined:
invokedynamic sum(DD)D

dload 3
dmul
dstore 3

43	

Dynamic languages on the JVM

Field Representation	

■  Assume types of variables don’t change. If they do, they converge on a final
type quickly	

■  Internal type representation can be a field, several fields or a “tagged value”	

■  Reduce data bandwidth	

■  Reduce boxing	

■  Remember undefined	

■  Representation problems	

 var x;
 print(x); // getX()O

 x = 17; // setX(I)
 print(x); // getX()O

 x *= 4711.17; // setX(D)
 print(x); // getX()O

 x += “string”; // setX(O)
 print(x); // getX()OO

 // naïve impl
 // don’t do this

 class XObject {
 int xi;
 double xd;
 Object xo;
 }

44	

Dynamic languages on the JVM
Field Representation – getters on the fly – use SwitchPoints	

■  Not actual code – generated by MethodHandles	

int getXWhenUndefined()I {
 return 0;
}
double getXWhenUndefined()D {
 return NaN;
}
Object getXWhenUndefined()O {
 return Undefined.UNDEFINED;
}
}

int getXWhenInt()I {
 return xi;
}
double getXWhenInt()D {
 return JSRuntime.toNumber(xi);
}
Object getXWhenInt()O {
 return JSRuntime.toObject(xi)
};
}

int getXWhenDouble()I {
 return JSRuntime.toInt32(xd);
}
double getXWhenDouble()D {
 return xd;
}
Object getXWhenDouble()O {
 return JSRuntime.toObj(xd);
}

int getXWhenObject()I {
 return JSRuntime.toInt32(xo);
}
double getXWhenObject()D {
 return JSRuntime.toNumber(xo);
}
Object getXWhenObject()O {
 return xo;
}

45	

Dynamic languages on the JVM
Field Representation – setters	

■  Setters to a wider type T trigger all SwitchPoints up to that type	

void setXWhenInt(int i) {
 this.xi = i; //we remain an int, wohooo!
}

void setXWhenInt(double d) {
 this.xd = d;
 SwitchPoint.invalidate(xToDouble);
 //invalidate next switchpoint, now a double;
}

void setXWhenInt(Object o) {
 this.xo = o;
 SwitchPoint.invalidate(xToDouble, xToObject)
 //invalidate all remaining switchpoints, now an Object forevermore.
}
}

46	

The Nashorn Project	

	

JavaScript using 	

invokedynamic

47	

The Nashorn Project	

•  A Rhino for 2013 (aiming for open source release in

the Java 8 timeframe)	

•  Nashorn is German for Rhino (also sounds cool)	

48	

The Nashorn Project	

•  A Rhino for 2013 (aiming for open source release in

the Java 8 timeframe)	

•  Nashorn is German for Rhino (also sounds cool)	

49	

The Nashorn Project

Rationale	

■  Create a 100% pure Java invokedynamic based POC of a dynamic
language implementation on top of the JVM	

■  It should be faster than any previous invokedynamic-free
implementations	

■  Become the ultimate invokedynamic consumer, to make sure this stuff
works	

■  Performance bottlenecks in the JVM should be cross communicated
between teams	

50	

The Nashorn Project

Rationale	

■  JavaScript was chosen	

■  Rhino, the only existing equivalent is slow	

■  Rhino codebase contains all deprecated backwards compatibility ever	

■  Ripe for replacement	

■  JSR-223 – Java to JavaScript, JavaScript to Java	

■  Automatic support. Very powerful	

■  The JRuby folks are already doing an excellent work with JRuby	

51	

The real reason – Keep up with
Atwood’s law:	

	

Atwood’s law: “Any application that can be written in

JavaScript, will eventually be written in JavaScript”	

	
- James Atwood (founder, stackoverflow.com)	

52	

The real reason – Keep up with
Atwood’s law:	

	

2nd law of Thermodynamics: “In all closed systems, entropy

must remain the same or increase”	

53	

54	

The Nashorn Project
Rationale	

■  Do a node.js implementation that works with Nashorn	

■  “node.jar” (Async I/O implemented with Grizzly)	

■  4-5 people working fulltime in the langtools group.	

■  Nashorn is scheduled for open source release in the Java 8 timeframe	

■  Source code is currently available in the OpenJDK repo	

■  node.jar has no official schedule yet	

■  Other things that will go into the JDK	

■  Dynalink (finalizing legal approval – hopefully there for M7)	

■  ASM (already integrated into Java8)	

55	

The Nashorn Project
Challenge – JavaScript is an awful, horrible language	

56	

The Nashorn Project
Challenge – JavaScript is an awful, horrible language	

■  ‘4’ - 2 === 2, but ‘4’ + 2 === ’42’

■  Can I have variable declarations after their usages? Of course you can!	

■  The entire with keyword	

■  Number(“0xffgarbage”) === 255

■  Math.min() > Math.max() === true

■  Array.prototype[1] = 17; var a = [,,,]; print(a) : [,17,]

■  So I take this floating point number and shift it right…	

■  a.x looks just like a field access	

■  May just as easily be a getter with side effects (a too for that matter)	

■  [] + {}, {} + [], [] + [], {} + {}

■  I could go on, but anyway, it’s a compiler/runtime writer’s worst nightmare 	

57	

Compliance	

	

Scene: a rainy fall evening at a pub in Stockholm.
Attila (@asz) running the ECMA test suite [1]…

~11,500 tests…	

	

	

	

	

	

	

	

	

	

	

	

	

[1] http://test262.ecmascript.org

	

	

58	

100%! WOHOO! 	

59	

The Nashorn Project
Compliance	

■  At the time of writing we have full ECMAScript compliance	

■  This is better than ANY existing JavaScript runtime	

■  Rhino, somewhat surprisingly, is only at ~94%	

■  Shifting focus more and more towards performance… 	

60	

The Nashorn Project
Performance	

rhino	

nashorn	

0	

2000	

4000	

6000	

8000	

10000	

12000	

box2d	
 crypto	
 deltablue	
 earley-boyer	
 gameboy	
 navier-stokes	
 pdfjs	
 raytrace	
 regexp	
 richards	
 splay	

rhino	

nashorn	

61	

The Nashorn Project
So why not V8/Spidermonkey/other native runtime then?	

■  Nashorn is not a single threaded C++ monolith	

■  Nashorn is a lot smaller in scope as it does not need its own runtime	

■  nashorn.jar is ~1MB 	
	

■  Project Jigsaw will help us even more	

■  Multithreading	

■  Free portability across hardware platforms	

■  Our node.jar implementation is already quite fast and much smaller than
node.js	

62	

The Nashorn Project
So why not V8/Spidermonkey/other native runtime then?	

■  JSR-223	

■  Powerful	

■  Java can call JavaScript	

■  JavaScript can call Java	

■  Makes things like node.jar significantly less complex	

■  You WANT this a JavaScript developer	

 var random = new java.util.Random;

 java.lang.System.out.println(random.nextInt());

 var runnable = new java.lang.Runnable({
 run: function() { console.log('running'); }
 });
 var executor = java.util.concurrent.Executors.
 newCachedThreadPool();

 executor.submit(runnable);

 import javax.script.*;

 Object z = x.get(“y”);
 x.put(“y”, z);

63	

The Nashorn Project
So why not V8/Spidermonkey/other native runtime then?	

■  Killer apps? It is very attractive with a small self contained node.jar in the
Java EE cloud as well as in embedded environments	

■  We have successfully deployed Nashorn running node.jar on a
Raspberri Pi board.	

■  How cool is that? ;-)	

■  Java Mission Control!	

■  The future will bring further Nashorn AND JVM performance
improvements.	

64	

The Nashorn Project
More info, please!	

■  hg clone http://hg.openjdk.java.net/nashorn/jdk8/nashorn
■  cd make ; make

■  Check the Nashorn blog for news	

■  http://blogs.oracle.com/nashorn

65	

Improvements on the Horizon	

	

Nashorn performance. Invoke dynamic performance. JVM
performance.	

	

	

Charlie Nutter @FOSDEM: “Performance – I believe. I really do.
But it has gone back and forth”	

	

66	

The Nashorn Project
Nashorn improvements	

■  Performance, performance, performance.	

■  Look at parallel APIs	

■  Lazy execution architecture	

■  Library improvements	

■  RegExp	

■  Possible integration with existing 3rd party solutions	

■  TaggedArrays – grope around a bit in the JVM internals	

■  Not too much	

	

67	

JVM Improvements
JVM improvements	

■  Permgen removal	

■  Classic problem with OOM generating lots of bytecode	

■  Stability	

■  Java 7 Invokedynamic had stability issues	

■  Java 8 MethodHandle framework rewritten mostly in Java	

■  LambdaForms (entire MH chain in Java)	

■  Going into upcoming 7 backport.	

68	

JVM Improvements
	
	

69	

JVM Improvements
JVM improvements	

■  Inlining artifacts matter a lot for callsites	

■  Need incremental inlining	

■  LambdaForms make stack traces huge. If we don’t inline better we are
dead.	

■  Good inlining begets local escape analysis which begets boxing removal
– boxing is our other enemy.	

70	

JVM Improvements
First I was like… 	

71	

JVM Improvements
…but then…	

72	

JVM Improvements
LambdaForms	

■  LambdaForms	

■  What? A third JIT?	

■  Warmup issues	

■  ..being addressed	

■  Interpretor overhead	

	

73	

In conclusion
Open source!	

■  The good news: YOU CAN HELP!	

■  The Nashorn project: hg clone http://hg.openjdk.java.net/nashorn/
jdk8/nashorn 	

■  The Da Vinci Machine Project: http://openjdk.java.net/projects/mlvm/

■  The open source plan is	

1.  Ask the community to contribute functionality, testing, performance,
performance analysis, bug fixes, library optimizations, test runs with “real”
applications, browser simulation frameworks, kick-ass hybrid Java solutions	

2.  …?	

3.  Profit!	

Q&A	

	

Follow me on Twitter: @lagergren	

	

	

	

	

	

	

	

	

	

	

	

	

	

