
Open Source
building blocks for the

Internet of Things
Benjamin	
 Cabé	

JFokus	
 2013	

Who I am

•  Benjamin Cabé
•  Open Source M2M

Evangelist at Sierra Wireless
•  Long-time Eclipse lover

❝
M2M? IoT?

Technology that supports
wired or wireless
communication
between devices

Communication
Infrastructure

Smart
Pill
Box

Heartbeat
Sensor

Weight
Scale

Blood
Pressure

Medical
Services
Gateway

Near field

Blood
Sugar

Internet
of Things

Patient

Clinical Trial

Doctor

However…
The market is fragmented

–  Hardware, software, protocols…
all different, independent

–  Lack of integration…
between devices, to enterprise systems

M2M development is complex
–  Many different skills required…

Hardware, Embedded, IT network, Telecom,
web

–  No common architectural guidelines

Current options are closed
–  Monolithic solutions…

device specific, app specific, market specific
–  Proprietary SDKs, protocols, potential vendor

lock-in

Framework

Tools

3 projects

Protocols

M2M embedded
programming

•  low-level C

•  memory
management

•  multithreaded
programming

•  read sensor values

•  control actuators

•  consolidate data

•  communicate

Example: Sending an SMS
int main()	
{	
 unsigned char char1[10];	
 unsigned char char_buf[8]="AT+CSQ\n";	
 // unsigned char sms_buf[20] = "AT+CMGS="xxxxxxxxx";	
 	
 int wc_fd;	
 /********* Init of serial port ************/	
 wc_fd = init_wc(wc_fd);	
 sleep(3);	
 //writing to serial port	
 write(wc_fd,char_buf,sizeof(char_buf));	
 usleep(40000);	
 //reading from serial port	
 read(wc_fd,char1,sizeof(char1));	
 	
 sleep(2);	
 close(wc_fd);	
 	
 return 0;	
} // end of main	
	
// initialization of serial port	
	
struct termios options;	
	
ttys5_fd = open("/dev/ttyS5", O_RDWR);	
if (ttys5_fd < 0)	
{	
 printf("\nFail to open serial port 2\n");	
 return 0;	
}	
init_tty(ttys5_fd ,BAUD_RATE);	
return ttys5_fd;	

//initializing baud rate	
int init_tty(int fd ,long wBaud)	
{	
 	
 long baud;	
 	
 switch (wBaud)	
 {	

sms.send( 
 '+33612345678’,  
 'My SMS’  
)	
	

Simplify M2M programming

What is Lua?

•  High-level programming language

•  Scripting

•  Simple

•  Extensible

•  Portable

Extensible by design

•  Small
– Trivial syntax and reduced keyword set

•  Simple but not stupid
– Simple enough for new users, powerful

enough for advanced users (first-class
functions, garbage collection, closures, tail
calls, coercion, coroutines, metatables)

•  Lua core is tiny
– Compiled size is ~150kB
– Lua uses libraries for its extensions

Lua vs. other high-level
languages

•  Same core features as Python, Ruby,
Javascript

•  Better concurrency management
– Built-in – doesn’t rely on the OS

•  Cutting-edge execution technology
& performances

Lua vs. other high-level
languages

•  Restricted set of libraries
– Stay simple, the developer brings his own

•  Designed for C integration
– Performance
– Legacy

Lua for embedded and M2M?

•  High-level languages usually trade
hardware resources for
development & maintenance
resources

Lua allows to reconcile high-level
languages accomplishments
with embedded constraints

You need an IDE!
•  Project structure
•  Syntax coloring

•  Content assist

•  Code navigation

•  Code formatting

•  Documentation
•  Code templates

•  Debugger

•  Remote development

•  Embedded interpreter

June 2012: first release (0.8)
Dec. 2012: 0.9 release
June 2013: graduate w/ Kepler
50,000+ installations already! (Feb. 2013)

DEMO

Using Koneki LDT for
remote Lua development

 101

•  http://www.eclipse.org/koneki/ldt
•  Download standalone IDE
•  Or install in existing Eclipse

–  from Juno repository (0.8.2)
–  from nightly/milestones repositories (0.9+)

•  Execution environments on Koneki wiki
–  http://goo.gl/f6T80

•  Contact the team
–  http://eclipse.org/forums/eclipse.koneki

http://www.sxc.hu/photo/1036004

•  Messaging protocol

•  Low-bandwidth / Low-power

•  Payload agnostic

•  Adjustable QoS

•  Large ecosystem

broker broker

(optional) bridge

publish
subscribe

keepalive
last will & testament
username/password

topic/subtopic

topic/#

 101
•  http://eclipse.org/paho/
•  Eclipse Paho delivers clients for MQTT in C and

Java
–  http://eclipse.org/paho/download.php

•  Lua client available soon
–  https://github.com/geekscape/mqtt_lua

•  MQTT view in Eclipse
–  http://git.eclipse.org/c/paho/org.eclipse.paho.esf.git/

•  Free broker hosted at Eclipse: m2m.eclipse.org

•  Contact the team
–  paho-dev mailing-list

Lua VM + MQTT client to go?

Application framework for M2M

•  Set of libraries providing building
blocks to develop M2M applications:
– Serial and I/O management,
– Networking (FTP, HTTP, e-mail, …),

– GPS,
– Cryptography,
– Modbus,

– Local storage
– etc. http://www.eclipse.org/mihini

Smart agent for M2M

•  M2M data queues

•  Network bearers

•  Device management

•  Application container

•  Application configuration

http://www.eclipse.org/mihini

Asset management

•  User applications use an API to
communicate with Mihini
– Send data or events
– Register listeners to handle data writing or

commands

•  The Mihini agent takes care of
network connection, buffering and
reliable storage of unsent data, etc.

Asset management

local gh_asset = asset_mgt.newAsset("greenhouse")

gh_asset:start()

gh_asset:pushdata("sensors.temperature", 22, "now")
gh_asset:pushdata("sensors.humidity", 89, "hourly")

Device management

•  A Tree Manager presents device's
data as
– variables,
– organized in a hierarchical tree,

–  that can be read, written, and monitored for
changes by user applications.

•  Standard paths for modem, network
settings, …

Device management
local devicetree = require 'devicetree'
local APN = 'system.cellular.apn.apn'
local RSSI = 'system.cellular.link.rssi'

local apn = devicetree.get (APN)
log(LOG_NAME, "INFO", "Configure APN: %s", apn)

local function print_callback (values)
 for name, value in pairs(values) do
 log (LOG_NAME, "INFO",
 " - Variable %s changed: %s",name, value)
 end
end

devicetree.register(RSSI, print_callback)

devicetree.set(APN, 'foo')

Application Management

•  Language-agnostic application
container
–  install/uninstall
– start/stop, auto-start on boot
– restart on failure

•  Agent handles over-the-air software
download and update mechanism

•  Remote script execution

 101

•  http://www.eclipse.org/proposals/
technology.mihini

•  http://eclipse.org/mihini

•  Code will be available (very) soon
–  Initial contribution is pending IP review at

Eclipse

Let me
show you!

A very common use case

•  Greenhouse business
– Connect gardening equipment
– Remote monitoring of sensors
– Remote control

•  M2M Gateway not selected yet,
neither is the rest of the equipment
(PLCs)

m2m.eclipse.org MQTT broker

Raspberry Pi Mobile phone

humidity
temperature
illuminance

light ON/OFF

Modbus RTU

Two Lua applications

Embedded

–  Uses Modbus library to
communicate w/ Arduino

–  Collects sensor data/
controls actuators

–  Publishes MQTT messages

–  Subscribe to commands

Mobile

Corona SDK

–  Subscribes to MQTT
messages

–  Displays sensor data
with a fancy UI

–  Publish command to
switch on/off the light

Rugged wireless
gateways

control sensors &
actuators

Mobile phones

Web applications

IT applications

Modbus

…

M2M server

Telco	

Billing	
 etc…	

Roadmap

•  Protocols
– M3DA (Micro M2M Data Access) – see the spec. at

http://wiki.eclipse.org/Mihini/M3DA_Specification

•  REST API
– Ease the communication of 3rd party apps with

the Agent

– Provide better tooling

•  Polyglot framework
– C and Java on their way

Join the party!

Thank you!

