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Who I am 

•  Benjamin Cabé 
•  Open Source M2M 

Evangelist at Sierra Wireless 
•  Long-time Eclipse lover 



❝ 
M2M? IoT? 

Technology that supports 
wired or wireless 
communication 
between devices 
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However… 
The market is fragmented 

–  Hardware, software, protocols… 
all different, independent 

–  Lack of integration…  
between devices, to enterprise systems 
 

M2M development is complex 
–  Many different skills required… 

Hardware, Embedded, IT network, Telecom, 
web 

–  No common architectural guidelines 
 

Current options are closed 
–  Monolithic solutions…  

device specific, app specific, market specific 
–  Proprietary SDKs, protocols, potential vendor 

lock-in 





Framework 

Tools 

3 projects 

Protocols 



M2M embedded 
programming 

•  low-level C 

•  memory 
management 

•  multithreaded 
programming 

•  read sensor values 

•  control actuators 

•  consolidate data 

•  communicate 



Example: Sending an SMS 
int main()	
{	
    unsigned char char1[10];	
    unsigned char char_buf[8]="AT+CSQ\n";	
    // unsigned char sms_buf[20] = "AT+CMGS="xxxxxxxxx";	
    	
    int wc_fd;	
    /********* Init of serial port ************/	
    wc_fd = init_wc(wc_fd);	
    sleep(3);	
    //writing to serial port	
    write(wc_fd,char_buf,sizeof(char_buf));	
    usleep(40000);	
    //reading from serial port	
    read(wc_fd,char1,sizeof(char1));	
    	
    sleep(2);	
    close(wc_fd);	
    	
    return 0;	
} // end of main	
	
// initialization of serial port	
	
struct termios options;	
	
ttys5_fd = open("/dev/ttyS5", O_RDWR );	
if (ttys5_fd &lt; 0)	
{	
    printf("\nFail to open serial port 2\n");	
    return 0;	
}	
init_tty( ttys5_fd ,BAUD_RATE);	
return ttys5_fd;	
	
-----------------------------------	
//initializing baud rate	
int init_tty( int fd ,long wBaud)	
{	
    	
    long baud;	
    	
    switch (wBaud)	
    {	

sms.send(  
  '+33612345678’,  
  'My SMS’  
)	
	
 



Simplify M2M programming 



What is Lua? 

•  High-level programming language 

•  Scripting 

•  Simple 

•  Extensible 

•  Portable 



Extensible by design 

•  Small 
– Trivial syntax and reduced keyword set 

•  Simple but not stupid 
– Simple enough for new users, powerful 

enough for advanced users (first-class 
functions, garbage collection, closures, tail 
calls, coercion, coroutines, metatables) 

•  Lua core is tiny 
– Compiled size is ~150kB 
– Lua uses libraries for its extensions 



Lua vs. other high-level 
languages 

•  Same core features as Python, Ruby, 
Javascript  

•  Better concurrency management 
– Built-in – doesn’t rely on the OS 

•  Cutting-edge execution technology 
& performances 



Lua vs. other high-level 
languages 

•  Restricted set of libraries 
– Stay simple, the developer brings his own  

•  Designed for C integration 
– Performance 
– Legacy 



Lua for embedded and M2M? 

•  High-level languages usually trade 
hardware resources for 
development & maintenance 
resources 

Lua allows to reconcile high-level 
languages accomplishments 
with embedded constraints 



You need an IDE! 
•  Project structure 
•  Syntax coloring 

•  Content assist 

•  Code navigation 

•  Code formatting 

•  Documentation 
•  Code templates 

•  Debugger 

•  Remote development 

•  Embedded interpreter 

June 2012: first release (0.8) 
Dec. 2012: 0.9 release 
June 2013: graduate w/ Kepler 
50,000+ installations already! (Feb. 2013) 



DEMO 

Using Koneki LDT for 
remote Lua development 
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•  http://www.eclipse.org/koneki/ldt 
•  Download standalone IDE 
•  Or install in existing Eclipse 

–  from Juno repository (0.8.2) 
–  from nightly/milestones repositories (0.9+) 

•  Execution environments on Koneki wiki 
–  http://goo.gl/f6T80  

•  Contact the team 
–  http://eclipse.org/forums/eclipse.koneki  



http://www.sxc.hu/photo/1036004  



•  Messaging protocol 

•  Low-bandwidth / Low-power 

•  Payload agnostic 

•  Adjustable QoS 

•  Large ecosystem 



broker broker

(optional) bridge

publish
subscribe

keepalive
last will & testament
username/password

topic/subtopic

topic/#
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•  http://eclipse.org/paho/ 
•  Eclipse Paho delivers clients for MQTT in C and 

Java 
–  http://eclipse.org/paho/download.php 

•  Lua client available soon 
–  https://github.com/geekscape/mqtt_lua 

•  MQTT view in Eclipse 
–  http://git.eclipse.org/c/paho/org.eclipse.paho.esf.git/ 

•  Free broker hosted at Eclipse: m2m.eclipse.org 

•  Contact the team 
–  paho-dev mailing-list 



Lua VM + MQTT client to go? 



Application framework for M2M 

•  Set of libraries providing building 
blocks to develop M2M applications: 
– Serial and I/O management,  
– Networking (FTP, HTTP, e-mail, …), 

– GPS,  
– Cryptography,  
– Modbus,  

– Local storage 
– etc. http://www.eclipse.org/mihini  



Smart agent for M2M 

•  M2M data queues 

•  Network bearers 

•  Device management 

•  Application container 

•  Application configuration 

http://www.eclipse.org/mihini  



Asset management 

•  User applications use an API to 
communicate with Mihini 
– Send data or events 
– Register listeners to handle data writing or 

commands 

•  The Mihini agent takes care of 
network connection, buffering and 
reliable storage of unsent data, etc. 



Asset management 

local gh_asset = asset_mgt.newAsset("greenhouse") 
 
gh_asset:start() 
 
gh_asset:pushdata("sensors.temperature", 22, "now") 
gh_asset:pushdata("sensors.humidity", 89, "hourly") 



Device management 

•  A Tree Manager presents device's 
data as 
– variables, 
– organized in a hierarchical tree, 

–  that can be read, written, and monitored for 
changes by user applications. 

•  Standard paths for modem, network 
settings, … 



Device management 
local devicetree = require 'devicetree' 
local APN        = 'system.cellular.apn.apn' 
local RSSI       = 'system.cellular.link.rssi' 
 
local apn  = devicetree.get (APN) 
log(LOG_NAME, "INFO", "Configure APN: %s", apn) 
 
local function print_callback (values) 
    for name, value in pairs(values) do 
        log (LOG_NAME, "INFO",  
                " - Variable %s changed: %s",name, value) 
    end 
end 
 
devicetree.register(RSSI, print_callback) 
 
devicetree.set(APN, 'foo') 



Application Management 

•  Language-agnostic application 
container 
–  install/uninstall 
– start/stop, auto-start on boot 
– restart on failure 

•  Agent handles over-the-air software 
download and update mechanism 

•  Remote script execution 
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•  http://www.eclipse.org/proposals/
technology.mihini 

•  http://eclipse.org/mihini 

•  Code will be available (very) soon 
–  Initial contribution is pending IP review at 

Eclipse 



Let me 
show you! 



A very common use case 

•  Greenhouse business 
– Connect gardening equipment 
– Remote monitoring of sensors 
– Remote control 

•  M2M Gateway not selected yet, 
neither is the rest of the equipment 
(PLCs) 



m2m.eclipse.org MQTT broker 

Raspberry Pi Mobile phone 

humidity 
temperature 
illuminance 

light ON/OFF 

Modbus RTU 



Two Lua applications 

Embedded 
 

  

–  Uses Modbus library to 
communicate w/ Arduino 

–  Collects sensor data/
controls actuators 

–  Publishes MQTT messages 

–  Subscribe to commands 

Mobile 
 

Corona SDK 

–  Subscribes to MQTT 
messages 

–  Displays sensor data 
with a fancy UI 

–  Publish command to 
switch on/off the light 



Rugged wireless 
gateways 

control sensors & 
actuators 

Mobile phones 

Web applications 

IT applications 

Modbus 

… 

M2M server 

Telco	
  

Billing	
   etc…	
  



Roadmap 

•  Protocols 
– M3DA (Micro M2M Data Access) – see the spec. at 

http://wiki.eclipse.org/Mihini/M3DA_Specification  

•  REST API 
– Ease the communication of 3rd party apps with 

the Agent 

– Provide better tooling 

•  Polyglot framework 
– C and Java on their way 



Join the party! 



Thank you! 


