=
a5

Performance Methodology

‘ewerk
ormance S

ORACLE

Aleksey Shipilev Kirk Pepperdine
Java Performance Java Performance
Oracle Kodewerk

@shipilev @kcpeppe

Aleksey Shipilev

Speaker Bio

m /+ years of (Java) Performance
m 3 years at Intel
m 4 years at Sun/Oracle

Projects

m Apache Harmony
m Oracle/Open|DK
m SPECjbb201x
n

Kirk Pepperdine L

Speaker Bio
m |5 year Performance tuning across many industries
m Background in super and exotic computing platforms
m Helped found
m Developed Java performance seminar (www.kodewerk.com)
m Member of Java Champion program, Netbeans Dream Team
m Recently founded |Clarity,
m a company who's purpose is to redefine performance tooling

m Invite you to join Friends of JClarity ()

#include <disclaimer.h>

D e

The resemblance of any opinion,
recommendation or comment made
during this presentation to performance
tuning advice is merely coincidental.

Measure Don't Guess

G S

m Hypothesis free investigations
m Progress through a series of steps to arrive at a conclusion

Introduction

.

Computer Science — Software Performance

Software Engineering Engineeering

m Way to construct software to

meet functional requirements m Researching complex interactions
between hardware, software, and

data

m ‘‘Real world strikes back!”

m Abstract machines

m Abstract and composable, “formal
science” m Based on empirical evidence

Benchmarking

2 £ ad
< W Jiokiis2018n ¥

Experimental Setup

MYTH DEBUNKING WOULD NeVER
GET PAST PEER REVEW.

You can't go any further without the

proper test environment

Relevant: reproduces the phenomena
Isolated: leaves out unwanted effects
Measurable: provides the metrics
Reliable: produces consistent result

WHAT DO YOuU MEAN
ONE DATA PONT 1S

WWW.PHDCOMICS.COM

"Piled Higher and Deeper" by Jorge Cham
www.phdcomics.com

JORGE CWAM © 2009

Relevant and Isolated

e e

m Hardware
m Production like
m Phantom bottlenecks
m Quiet
m Software
m lest harness
m lLoad injector and acceptor
m Data

m Production like in volumes and veracity

Measurable and Reliable

e e

m Usage Patterns
m Describes load
m Use case + number of users and transactional rates, velocity
m Performance requirements
m Trigger metric is most likely average response time
m Validation
m Test the test!
m Make the sure your bottleneck isn't in the test harness!

Performance Testing Steps

m Script usage patterns into a load test

m Install/configure application to the same specs as production
m Setup monitoring

m Performance requirements

m OS performance counters and garbage collection

Kill everything on your system

Spike test to ensure correctness

Load test

Validate results

Repeat as necessary

Introducing the test

Metrics

Throughput
(Bandwidth)

m How many operations are done
per time unit?

m Have many forms: ops/sec, MB/
sec, frags/sec

m Easiest to measure

m Easiest to interpret

Time
(Latency)

m How much time one operation
took!?

m Targets many things: latency,
response time, startup time

m Generally hard to measure
(reliably)

Bandwidth vs. Latency

100000000 critical-joOPS max$jopPs
OE
L
10000000 4 ;.0

] o
(=) : aT
@ &g
'S . . ¥ 4 - : '

- 1000000 4 t ! e S DAL IR < ® o0
OEJ] !z,xrlxxlllx"‘) e ® .”.
= e t ¥ 200
@ _— v oo"’""'.
a s DD
s - X ot
o 100000 § " -y £ &
é] ¥ ‘ -
' ® 0
° o
10000 4 o2
1t "
- ¥
: : ‘..‘.”0.“ —_— F;l:H'Hﬁ:!:!qnt\:EEH: :F:H
1000 - ;:R#._&&FFFH:RHF? meﬂmﬁﬁmﬂwﬂWFHHFF#FFFF"“ﬂﬂmﬁ““““*“““mﬂ?*gﬁ&g‘ﬂﬂﬁf&&ﬁ — ’
B 500 1000

Throughput, ops/sec

®m min e median 90-th percentile 95-th percentile

= 99-th percentile max

Source: upcoming SPECjbb2013

Little's Law

The nice artifact of the queuing theory

L=AT

L: number of outstanding requests, concurrency level
A: throughput
T. service time

Implications:
m Under the same L, A is inversely proportional to T
m Under known A and T, you can infer the L

Pop Quiz

Imagine the application with two distinct phases
m Part A takes 70% of time, potential speedup = 2x
m Part B takes 30% of time, potential speedup = 6x

m Which one to invest in?

70 sec 30 sec

Pop Quiz

Imagine the application with two distinct phases
m Part A takes 70% of time, potential speedup = 2x
m Part B takes 30% of time, potential speedup = 6x

m Which one to invest in?

Optimize B:
70 sec 30 sec
Optimize A s s

Ahmdal's Law

We can generalize this observation as:

B A
- A+ B

Part(A)

1

SpeedUp =

Part(A
(1 — Part(A)) Speed;](p()A)

Ahmdal's Law Limits Speedups

10

Total Speedup

G S

0.0 0.1 0.2 0.3

Speedups
- Dy
mm 44X
= 8X

20x

Applying Ahmdal's Law

Imagine the application with two distinct phases
m Part A takes 70% of time, potential speedup = 2x
m Part B takes 30% of time, potential speedup = 6x

m Which one to invest in?

Optimize B: +33%
Optimize A rs3% T

Where Ahmdal's Law Breaks Down

e e

Composability
m Given two functional blocks,A and B
m The difference with executing () or (A par B)?

Functional-wise:
m Result() == Result(A par B)
m “Black box abstraction”

Performance-wise:
m Performance() 17 Performance(A par B)
m No one really knows!

Ensure test is reliable

Generational Counts

Age:2

Age:3

Age:4

W
*i‘r
W

**ﬁf

W w
iﬁriﬁ?i‘zg

WOW

Generational Counts (2)

Age:1 Age:2 Age:3 Age:4
Ol o H*x o % % i
2 QOO TR - A
> 300 T W w U o e
*000mogw| ¥ x %

Object | Generations Count |Classify

1 1 Normal

1,2 2 Normal

ﬁ > 4 1 Cached

> | 1 Normal

O |12 2 Normal
W [1,2,3,4 4 Leak

How to speed up the application?

Change something somewhere in some specific way!

How to speed up the application?

Change something somewhere in some specific way!

P

How to speed up the application?

Change something somewhere in some specific way!

m What!

m Where!?

m How!

How to speed up the application?

Change something somewhere in some specific way!

m What prevents the application to work faster?

m Where it resides!?

m How to change it to stop messing with performance?

How to speed up the application?

Change something somewhere in some specific way!

m What prevents the application to work faster?
Courage, experience, and monitoring tools

m Where it resides?
Courage, experience, and profiling tools

m How to change it to stop messing with performance!
Courage, experience, your brain, and your favorite IDE

Top-Down Approach (classic)

System Level
m Network, Disk, CPU/Memory, OS

Application Level
m Algorithms, Synchronization, Threading, API

Microarchitecture Level
\/ m Code/data alignment, Caches, Pipeline stalls

Top-Down Approach (Java)

System Level
m Network, Disk, CPU/Memory, OS

JVM Level
m GG, |JIT, Classloading

Application Level

m Algorithms, Synchronization, Threading, API

\/ Microarchitecture Level

m Code/data alignment, Caches, Pipeline stalls

+ |terative Approach

/[Experiment }\

[Start]—»[Develop } [Gather data}
\\ /
[Prototype }—[Analyze]

m Start new phase when functional tests are passed

m Single change per cycle
m Document the changes

System Level

"‘:/‘/ \ me
| D013 - 6
5} T

System Level (CPU)

Lots of iowait%

| Network problems?

y

Extensive disk activity?

MNot enough disk/block caches?

MNot enough SW threads

i]fk%ihMr;low%rr%:cﬁi
: I = H,) Lots of sys% / _
_Swapping? Lots of idle%

i]ﬂwerrermew \ (:F)LJ? v

IJQt%rmwuw|RLWHlABLEiiﬂfthreada

GC pauses?

JVM is burning the cycles?

Algorithmic problems?

. Credits |

Interacting with devices? . //')
S — Lots of irq%, soft% \
System services?
o . Lots of user% |

The entry point is CPU utilization!
m Then, you have multiple things to test for

Memory problems?

CPU problems?

m Depending on sys%, irq%, iowait%, idle%, user%

m Need tools to examine each particular branch

Demo 3

First dive into the monitoring

System Level (sys%)

Sy

Network problems?

) ———_Lots of sys% _
owappingy \

Other kernel?
Lots of irq%, soft% /J
Credits /

Not particularly the application code fault
m Most obvious contender is network /O

m Then, scheduling overheads

m Then, swapping

m Then,in minor cases, other kernel

_Lots of iowait%
. Lots of idle%

T cPU?

_ Lots of user%

System Level (sys%, network)

TOOL: netstat, sar, iptraf, bwm-ng
AR: Reduce the traffic, packet count @ |

AR: (:On‘lpreSSiOn @ \
AR: Bufferization, BDP & k Network problems?

AR: MTU @ [)
AR: Faster hardware/links @ /| ._Lots of sys%

AR: Virtual interfaces @

One of the major contributors to sys%
m In many cases, hardware/OS configuration is enough

m In other cases, application changes might be necessary

System Level (sys%, scheduling)

Sy

TOOL: vmstat, mpstat, sar
AR: Reduce the amount of worker threads @

AR: Less context switches @ ' ~_ Lots of sys%
AR: Scheduling groups, quanta adjustments, priority @/ \

The symptom of the unbalanced threading
m Lots of voluntary context switches (thread thrashing)

m Lots of involuntary context switches (over-saturation)

System Level (sys%, swapping)

TOOL: top, sar
AR: Constrain the usage of physical memory &

o Lots of sys%
\ Swapping? /) \

{
\

AR: Decrease memory per process i@

AR: Swappiness @

|

AR: Lock pages in memory & |

< |

AR: Compress swap @ /

Swapping is the killer for Java performance
m The target is to avoid swapping at all costs

m Swapping out other processes to save the memory is good

System Level (sys%, other)

.

TOOL: strace, perf, oprofile | Lots of sys% N

AR: Time spent in other kernel? @ Other kernel? \
AR: Time spent in kernel-space with locking @ ¢
AR: Kernel bugs? @

Sometimes kernel is your enemy

m Unusual APl choices from the JVM and/or application
m (Un)known bugs

System Level (irq%, soft%)

TOOL: mpstat, sar

AR: Interrupt offload @ | Interacting with devices? Lots of irq%., soft%
AR: IRQ balancing @ /

B |

Usual thing when interacting with the devices
m Sometimes IRQ balancing is required
m Sometimes IRQ balancing is expensive

System Level (iowait%)

Sy

/
{

Extensive disk activity? : :
| b —_ Lots of iowait%
Not enough disk/block caches?

CPU? |

Expected contributor with disk 1/0
m Watch for disk activity

m Watch for disk throughput

m Watch for disk IOPS

System Level (iowait%, disk)

Sy

TOOL: iostat, sar
AR: Reduce the disk activity @
AR: HW caching/bufferization | \ Extensive disk activity?
AR: SW caching/bufferization

Lots of iowait%

AR: More disks always help (but not your budget)

Is that amount of 1/0 really required?
m Caching, bufferization are your friends
m More (faster) disks can solve throughput/IOPS problems

System Level (iowait%, caches)

Sy

TOOL: top, sar
AR: Increase cache memory (reduce other usages) @

| Not enough disk/block caches?

Lots of iowait% 4

AR: Get easy on flush()-es and cache invalidations @ y

AR: More disks always help (but not your budget)

More caching helps?
m Reduce other physical memory usages, free up for caches

m Trade in performance over consistency

Fixing the iowait problem — next step

System Level (idle%)

Not enough SW threads

Lots of idle% / ~ Not enough RUNNABLE SW threads

GC pauses?

| CPU?

There are resources, but nobody uses them?
m This is admittedly easy to diagnose

m ..and very easy to miss

System Level (idle%, threads)

TOOL: vmstat, mpstat

W AR: Get more threads! Parallelize application

Not enough SW threads .f‘

Lots of idle% | — W AR: Make the scheduler to use physical cores first (affinity)
P OlS Of 1[dIE/ \ W AR: Turn off CMT / use critical strands

\

. Not enough RUNNABLE SW threads

GC pauses?

Running low-threaded applications on manycore hosts
m The signal for you to start parallelizing

m Or, reduce the number of available HWV strands

System Level (idle%, threads)

Not enough SW threads

TOOL: lock profilers, jstack

Lots of idle% | Not enough RUNNABLE SW threads Wait locks? | & AR: Get rid of the locks
- \ _ @ AR: Use lock-free algos

GC pauses?

There are not enough threads ready to run
m Locking?
m Wiaiting for something else!?

System Level (idle%, GC)

Not enough SW threads
[Not enough RUNNABLE SW threads
- Lots of idle% ‘ ~_TOOL: -verbose:gc, etc
\ GC pauses? | @ AR: More threads for GC
@ AR: Pause-targeted GC-specific tuning

Very rare, and surprising case
m Application is highly threaded

m GC is frequently running with low thread count
m The average CPU utilization is low

Demo 5

Fixing the idle problem — next step

X —
7 - 1
\ </_/)r,\/ Jm

Application/
JVM Level

P
g ¥

Application Level (user%)

G S

VM is burning the cycles?

CPU7 A Lots of user% Algorithmic problems?
. i?' Memory problems?

CPU problems? |

Application/JVM is finally busy
m This is where most people start
m This is where profilers start to be actually useful

Application Level (Memory)

TLB

A Lots of user% _ e o oblere [caches

L NUMA (NUCA)
Memory band width |

Memory
m The gem and the curse of von-Neumann architectures

m Dominates most of the applications (in different forms)

Application Level (TLB)

TOOL: Easier to fix and test

B /[& AR: -XX:+UselargePages

AR: Large page sizes?

Memory problems?

TLB

m Very important for memory-bound workloads

m “Invisible” artifact of virtual memory system

Application Level (Caches)

TOOLS: (HWC) oracle solaris studio performance analyz
- @ AR: Enable/Disable prefetches
:“ Temporal locality & AR: Blocking decompositions
~ Capacity J~ .
Caches ———— & AR: Shrink data set
_ Spatial locality /| @ AR: -XX:+UseCompressedOops

@ AR: Denser data structures

Memory problems?

CPU caches: capacity

m Important to hide memory latency (and bandwidth) issues
m Virtually all applications today are memory/cache-bounded

Application Level (Caches)

TOOLS: Java-level profiling + HWC
[Primitives

' W AR: Choose the correct primitive

Caches
Memory problems? Py Coherence) W AR: Optimistic checks :

Techniques W AR: Striping

W AR: Get rid of the communication whatsoever

W AR: False Sharing _

CPU Caches: coherence
m Inter-CPU communication is managed via cache coherence

m Understanding this is the road to master the communication

Application Level (Bandwidth)

Memory problems? TOOL: busstat, multevent

3 AR: More faster memory

- Memory bandwidth

& AR: Multiple channels to main memory

_ @ AR: Multiple IMCs to handle the load

Memory Bandwidth
m Once caches run out, you face the memory
m Dominates the cache miss performance

m Faster memory, multiple channels help

Solving the concurrency problem — next step

Coherence: Primitives

Plain unshared memory
/\ Plain shared memory
m Provide communication

Volatile

m All above, plus visibility
Atomics

m All above, plus atomicity
Atomic sections

m All above, plus group atomicity
Spin-locks

m All above, plus mutual exclusion

Coherence: Optimistic Checks

It is possible at times to make an optimistic check
m Fallback to pessimistic version on failure
m The optimistic check has less power, but more performant

AtomicBoolean isSet = ...;

if (lisSet.get() &&
isSet.compareAndSet(false, true) {
// one-shot action

}

Coherence: Optimistic Checks

It is possible at times to make an optimistic check
m Fallback to pessimistic version on failure
m The optimistic check has less power, but more performant

ReentrantLock lock = ...;
int count = -LIMIT;
while (lock.tryLock()) {
if (count++ > 0) {
lock.lock();
break;

}
}

Coherence: Striping

It is possible at times to split the shared state
m Much less contention on modifying the local state
m The total state is the superposition of local states

Example: thread-safe counter

m synchronized { i++; }

m Atomiclnteger.inc();

m ThreadlLocal.set(ThreadLocal.get() + 1);

m Atomiclnteger[random.nextInt(count)].inc();

Coherence: No-coherence zone

D e

If you can remove the communication, do that!
m Immutability to enforce
m Thread local states

Example: ThreadLocalRandom @ JDK7
m Random: use CAS to maintain the state
m T[hreadlLocalRandom: essentially, ThreadLocal<Random>

m Can use plain memory ops to maintain the state

Coherence: (False) Sharing

e e

Communication quanta = cache line
m 32— 128 bytes long
m Helps with bulk memory transfers, cache architecture

m Coherence protocols working on cache lines

False Sharing
m CPUs updating the adjacent fields?
m Cache line ping-pong!

Demo 7

Diagnosing with allocation profiles

JVM Level

@ AR: Know your command-line options

[@ AR: Upgrade to newer JVM?
VM is burning the cycles? | GC _

\ Classload
T

—)

_ Lots of user%

JVM is the new abstraction level
m Interacts with the application, mangles into application
m JVM performance affects application performance

JVM Level (GC)

~ TOOL: -verbose:gc, -XX:+PrintGCDetails, VisualGC

els? ac | @ AR: Tune Java heap, generations, and regions
———————+_ @ AR Thread stack size
_ @ AR: (Un)usual tuning _

|VM is burning the

GC
m Most usual contender in JVM layer

m Lots of things to try fixing (not covered here, see elsewhere)

JVM Level (JIT)

VM is burning the cycles?) TOOL: PrintCompilation, MXBeans
-- | | _-server
— I ' @& AR: Choose the compiler -client
) —\\ . -XX:+TieredCompilation

__ & AR: Low-level tuning
_ @ AR: Go to Open|DK ML and ask

NT
m Very cool to have your code compiled
m Sometimes it's even cooler to get the code compiled better

JVM Level (Classload)

~TOOL: verbose:class, MXBeans

@ AR: Turn off bytecode verification: --no-verify

VM is burning the cycles? |—
. n | ¥ AR: Turn on CDS: -Xshare:on
_ Classload }—
) A W AR: Recompile your Java code with updated javac
’ _ @ AR: Increase the size of system dictionary
& AR: Repackage classes into small amount of larger JARs
Classload

m Important for startup metrics; not really relevant for others

m Removing the loading obstacles is the road to awe

Demo 8

Fixing the allocation problem

Application Level

Algorithmic problems? j-

\\ Lots of user%

Application level

<

Algorithmic complexity

Caching/Memoizing
Busy-waiting _

Batching and work scheduling

m In many, many cases, silly oversights in algorithms use

m Cargo cult of approaches, patterns, code reuse

Application Level (Algos)

TOOL: Profilers + Brain

Algorithmic complexity | & AR: Pick the algorithm with lower complexity

« AR: Pick the algorithm with lower constants

Algorithmic problems? |

Algorithmic Complexity
m Figuring out the straight-forward code has huge complexity

m Sometimes, the low-O code is slower than high-O code

Application Level (Caching)

‘ TOOL: Profilers + Brain

& AR: Memoize the results where appropriate

Caching/Memoizing |-

Algorithmic problems? | . ¥ AR: Use new objects where appropriate

W AR: For (distributed) caching the record size should be smaller

Application Caching
m Seems to be the answer to most performance problems?

m In fact, blows up the footprint, heap occupancy, etc

Application Level (Busy-waits)

Sy s S

~ TOOL: Profilers + Brain
Busy-waiting |/ & AR: Replace polling with timed waits

Algorithmic problems?

_ @ AR: Replace spinloops with spin-then-block

Application Busy-Waits
m The natural instinct: blocked waits (with helping)
m For latency-oriented: busy-waits are profitable

Demo 9

Analyzing with execution
profiles

uArch Level (CPU)

_ Lots of user%
Not enough CPU frequency?

\ CPU problems? Not enough Execution Units?
_ ILP depleted? _

CPU
m Most applications are not getting here
m A very simple capacity problem

uArch Level (CPU, frequency)

w AR: Overclocking

Not enough CPU frequency?

« AR: CPU frequency governors

CPU problems? |

CPU Frequency
m Exception: affects the memory/speculating performance

m How many servers out there are running with “ondemand’?

uArch Level (CPU, EU)

~ToOL: (HWC(), vtune, solstudio

« AR: Going for native platfrom-specific code

Specialized code

& AR: JIT intrinsics

CPU problems? Not enough Execution Units? |

W AR: cryptoaccelerators
W AR: GPU

Specialized Hardware -

& AR: Moar CPUs!

CPU, Execution Units
m Heavily-threaded hardware shares the CPU blocks

m Easy to run out of specific units with the homogeneous work

uArch Level (CPU, ILP)

CPU problems? ~ rooL: (HWQ) solstudio, vtune

_ ILP depleted? | @ AR: less branches?
_ @ AR: more ILP

Instruction Level Parallelism
m CPUs speculate aggressively
m Exposing less dependencies in the code help to speculate

Closing
Thoughts

Py < . a L
C < </ \),,_\/ Jm > ﬂ @ H @
= _ 5 0¥

Definitions

.

Utilization = how busy the resource is?
Resource Busylime
TotalT1me

Utilization =

idle = how free the resource is?

IdleTrme =1 — Utilization

Definitions

.

Efficiency = How much time is spent doing useful work?
m Not really possible to measure
m High Utilization != High Efficiency

Definitions

.

SpeedUp = A is N times faster than B means:

Speedlp = time(B) throughput(A)

time(A) throughput(B)

Definitions

G S

%Boost = A is P% faster than B means:

n

100%
Boost% = (SpeedUp — 1) x 100%

SpeedUp =1 +

time(B) — time(A)
time(A)

Boost% =

throughput(A) — throughput(B)

Boost% =
oot throughput(B)

Definitions

Performance
= Scalar Field in Config Space

P:K" >R

Scalability

= Gradient of PSF L e
S= v P -390 TS - - = ’/ ‘/'L/ ~ .

Resource Scalability
= specific (3:pnponent in SC
vector 9= IR

source:

i

Optimization Task

D e

The configuration space can be humongous
m You don't want to traverse it all

m Or, you do want to exhaustive search if space is small

Random walks are inefficient
m Need to estimate the gradient in all N dimensions
m Means 2*N experiments per each step

Local estimates to rescue!
m Can predict if P would grow, should we add specific resource

m This is where the bottleneck analysis steps in

First step (mistakes)

D e

We frequently hear:
m “l see the method foo() is terribly inefficient, let's rewrite it”
m “l see the profile for bar() is terribly high, at 5%, let's remove it”

m ‘| think our DBMS is a slowpoke, we need to migrate to [buzzword]”

Correct answer:
m Choose the metric!
m Make sure the metric is relevant!

m Your target at this point is improving the metric

Second step mistakes

e

“l can see the method foo() is terribly inefficient, let's
rewrite!”

m ..what if the method is not used at all
m ...what if it accounts for just a few microseconds of time

m ..what if it does account for significant time, but...

Actually, not a bad idea
m ..as the part of controlled experiment

m ...if the changes are small, isolated, and painless to make

Second step mistakes

“l can see the method bar() accounts for 5% of time, let's
remove it!”

m ...what if the CPU utilization is just 6.25%!
m ..what if this method pre-computes something reused later?
m ..what if this method is indeed problematic, but...

Second step mistakes

“l think our database is the problem! Let's migrate to
[buzzword]!”

m ...what if the you just depleted the disk bandwidth?
m ..what if your IT had shaped the network connection?
m ..what if your poor database just needs a cleanup!?

m ..what if the database is indeed the bottleneck, but...

TLBs Detailed

D e

Virtual memory operates on virtual addresses
m But hardware needs physical addresses to access memory
m Needs virtual — physical translation

m Tightly cooperates with OS (walks through page tables)

Extreme cost to do a single translation
m Happens on each memory access
m Let's cache the translated addresses!
u
m Granularity: single memory page

