


© King.com Ltd 2013 – Commercially confidential 

 Every day is like a little DDOS attack 

2 

A billion games played per day 

 

 

Lars Sjödin, Server Architect, King 



”Interactive entertainment company” 

3 

•  Create own brands and game 
concepts 

•  Develop, design and publish the 
actual game 

•  Market and sell directly to players 

•  Cooperate with social graph 
providers (mainly Facebook) and 
distributors (Apple, Google, Amazon) 
to reach and engange players 

History and background 

© King.com Ltd 2013 – Commercially confidential 



“Saga” concept 

4 

•  Play a level and get a score and 
earn 1-3 stars 

•  Progress to the next level 

•  See the progress of your friends! 

•  Progress is stored and accessible 
cross platform/device. 

History and background 

© King.com Ltd 2013 – Commercially confidential 



5 © King.com Ltd 2013 – Commercially confidential 

  
•    

  



6 

Since 2003 
•  August 2003 - Launch of the first 

gaming site called 
Midasplayer.com 

•  January 2007 - Over 80 million 
games played / month 

•  January 2009 - Over 350 million 
games played / month 

•  June 2013 - Over 1 billion games 
played / day 

1.  ” 

History and background 

© King.com Ltd 2013 – Commercially confidential 



© King.com Ltd 2013 – Commercially confidential 

Setup and volumes 

7 

  

  



© King.com Ltd 2013 – Commercially confidential 

Setup and volumes 

8 

  

  

250 000 
requests / s 

50 000 
writes / s 

(60 MB/s) 
1 800 000 

reads / s 

250 000 
writes / s 



© King.com Ltd 2013 – Commercially confidential 

What to do? 

9 

  

  

250 000 
requests / s 

1 800 000 
reads / s 

250 000 
writes / s 

50 000 
writes / s 

(60 MB/s) 



© King.com Ltd 2013 – Commercially confidential 

Focus for this talk 

10 

  

  



© King.com Ltd 2013 – Commercially confidential 

Eliminate unrealistically strict 
requirements 

11 

Cut yourself some slack: 

•  If each player plays 10 games a day, what is realistically the impact of failing 
to store 1 out of 100 000 000?  (ie, stop the redundancy and availability 
hysteria somewhere) 

 

First 



© King.com Ltd 2013 – Commercially confidential 

Eliminate unrealistically strict 
requirements 

12 

Cut yourself some slack: 

•  If each player plays 10 games a day, what is realistically the impact of failing 
to store 1 out of 100 000 000?  (ie, stop the redundancy and availability 
hysteria somewhere) 

•  The player only needs to see fresh versions of it’s own data. (Unless you 
design a game that forces players to sit next to each other or require 
immediate response) 

First 



© King.com Ltd 2013 – Commercially confidential 

Eliminate unrealistically strict 
requirements 

13 

Cut yourself some slack: 

•  If each player plays 10 games a day, what is realistically the impact of failing 
to store 1 out of 100 000 000?  (ie, stop the redundancy and availability 
hysteria somewhere) 

•  The player only needs to see fresh versions of it’s own data. (Unless you 
design a game that forces players to sit next to each other or require 
immediate response) 

•  If you sell virtual goods, don’t use database transactions, prefer storing things 
in the order most beneficial for the player. 

First 



© King.com Ltd 2013 – Commercially confidential 

Eliminate unrealistically strict 
requirements 

14 

Cut yourself some slack: 

•  If each player plays 10 games a day, what is realistically the impact of failing 
to store 1 out of 100 000 000?  (ie, stop the redundancy and availability 
hysteria somewhere) 

•  The player only needs to see fresh versions of it’s own data. (Unless you 
design a game that forces players to sit next to each other or require 
immediate response) 

•  If you sell virtual goods, don’t use database transactions, prefer storing things 
in the order most beneficial for the player. 

•  Be reasonable: even the cash register of the local supermarket won’t add up 
100% by the end of the day, and it’s still OK! 

First 



© King.com Ltd 2013 – Commercially confidential 

Eliminate unrealistically strict 
requirements 

15 

Cut yourself some slack: 

•  If each player plays 10 games a day, what is realistically the impact of failing 
to store 1 out of 100 000 000?  (ie, stop the redundancy and availability 
hysteria somewhere) 

•  The player only needs to see fresh versions of it’s own data. (Unless you 
design a game that forces players to sit next to each other or require 
immediate response) 

•  If you sell virtual goods, don’t use database transactions, prefer storing things 
in the order most beneficial for the player. 

•  Be reasonable: even the cash register of the local supermarket won’t add up 
100% by the end of the day, and it’s still OK! 

First 



© King.com Ltd 2013 – Commercially confidential 

Conservative start 

16 

•  Stuck to what we knew  

•  and built on top of that! 

Basic concept 



© King.com Ltd 2013 – Commercially confidential 

Conservative start 

17 

•  Plain java server without hibernate or J2EE stuff 

•  A lot of homegrown libraries: 

•  Caching 

•  Sharded data storage 

•  Database pool 

•  Serialization and deserialization primitives and conventions 

 

A bit like a cloud API 

Basic concept 



© King.com Ltd 2013 – Commercially confidential 

Conservative start 

18 

The butter and cream of the storage world: 

 

MySQL  

+ 

Memcached 

 

Makes everything better! 

Basic concept 



© King.com Ltd 2013 – Commercially confidential 

DataStore 

19 

•  Stores BLOBS in innoDB (mySQL) 

•  Key is a String (usually the UserID) 

•  Data is just Strings (bytes would have been better..)! 

•  String getData(DatabaseSession dbSession, String kingApp, String table, String key, boolean locked); 

•  void setData(DatabaseSession dbSession, String kingApp, String table, String key, String data); 

•  void delete(DatabaseSession dbSession, String kingApp, String table, String key); 

How to store data (is anyone reading this heading) 



© King.com Ltd 2013 – Commercially confidential 

JsonStore 

20 

•  Stores JSON data in a DataStore. 

•  <T> T get(DatabaseSession dbSession, KingApp kingApp, String table, String key, Class<T> clazz); 

•  <T> void set(DatabaseSession dbSession, KingApp kingApp, String table, String key, T t); 

•  <T> void delete(DatabaseSession dbSession, KingApp kingApp, String table, String key); 

•  <T> T update(DatabaseSession dbSession, KingApp kingApp, String table, String key, Operation<T> 
operation); 

public interface Operation<T> { 

    T operate(T t); 

} 

 

How to store data 



© King.com Ltd 2013 – Commercially confidential 

UserJsonStore 

21 

•  Stores stores data in a JsonStore using sharding information. 

•   <T> T get(KingApp kingApp, String table, UserStoreKey key, Class<T> clazz); 

•   <T> void set(KingApp kingApp, String table, UserStoreKey key, T t); 

•   <T> T update(KingApp kingApp, String table, UserStoreKey key, Operation<T> operation); 

public class UserStoreKey { 
    private final long userId; 
    private final String key; 
} 

How to store data 



© King.com Ltd 2013 – Commercially confidential 

Cut support to a minimun 

22 

•  Only allow certain datatypes when reading/writing data 

•  bool, int, double, String, [], Class with fields with valid types 

•  Makes changing serialization / transport much easier 

•  Makes support in many languages easier 

Some reused principles 



© King.com Ltd 2013 – Commercially confidential 

Data compatibility 

23 

 The compatibility promise: 

•  Missing fields are 0, null or false 
when read 

•  Extra fields are ignored when read 

èObjects can be upgraded to a new 
schema when read! 

Some reused principles 



© King.com Ltd 2013 – Commercially confidential 

Data compatibility in practice 

24 

public class SocialUser { 

    private byte[] firstname=”Lars”; 

    private long userId=1014427147; 

    private long birthdayDateMillis=121759200000; 

} 

 

public class SocialUser { 

    private byte[] firstname=”Lars”; 

    private byte[] picSmall=null; 

    private long userId=1014427147; 

    private long birthdayDateMillis=121759200000; 

} 

 
{ 
   ”firstname”:”Lars”,  
   ”userId”:1014427147,  
   “birthdayDateMillis”:121759200000 
} 
 



© King.com Ltd 2013 – Commercially confidential 

Data compatibility 

25 

•  Applied in the protocol which is JSON-RPC (http://json-rpc.org/ ) 

•  Applied when storing data in the DataStore 

•  Applied when storing objects in memcached 

 

Some reused principles 



© King.com Ltd 2013 – Commercially confidential 

Regular operation 

26 

  

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

The connection pool 

27 

Many database connections needs management or an approach to prevent 
deadlocks: 

 

1)  Only use one connection and then return it immediately (But connection 
cycling is expensive) 

2)  Unbounded connection pools (really?) 

3)  “Connection order”, ie always get connections to the databases in the same 
order (Works fine, needs enforcment) 

4)  Global “connection pool” (limits concurrency) 

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Problem scenarios 

28 

 Plain failure of a shard. “Easy”, just leave out and retry “every now and then” 

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Problem scenarios 

29 

Slow shard. What to do? 

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Problem scenarios 

30 

Slow shard. What to do? 

 

Monitor ALL queries as we go 

When queries start to be slow (more than 10 ms) we start measuring problems 
and throttle access to that shard. 

Throttling = allow ONE connection to that shard to go through for monitoring 
purposes (but fail it for the one asking for the data…).  

Measure query time and when it regains stable low values. Reopen the shard for 
business! 

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Problem scenarios 

31 

 Heterogenous characteristics 

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Problem scenarios 

32 

Heterogenous characteristics 

Reasons: 

•  Hardware is bought during different phases 

•  Old players are not as active as new players  

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Problem scenarios 

33 

Heterogenous characteristics 

Reasons: 

•  Hardware is bought during different phases 

•  Old players are not as active as new players 

•  A complex problem consisting of: 
Space left on disk 
Read and write performance 
Future plans 

•  Constant monitoring and rebalancing (Each server gets a scalar value based 
on query performance from Percona performance statistics) 

•  New players are manually configured to be created where we want them!  

Mysql Sharding 



© King.com Ltd 2013 – Commercially confidential 

Monitoring of our databases! 

34 

  

Custom tools 



© King.com Ltd 2013 – Commercially confidential 

Monitoring of our system! 

35 

Monitoring resource usage for each request:  

Custom tools 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

36 

5-25 million daily active users (DAU) 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

37 

5-25 million daily active users (DAU) 

•  Dealing with problems such as maintaining business during hardware failures. 

•  A shard failure (or worse: slowdown), can damage overall system. 

•  3 (three!) connection pools have been tried. Own heuristics to kick a shard that is 
misbehaving 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

38 

5-25 million daily active users (DAU) 

•  Adding hardware in a pace corresponding to growth 

•  Hardware has real production lead and delivery times 

•  Getting traffic estimates for 3 months ahead is hard 

•  Order hardware for ”worst” (best?) case growth!  

§  Ignore business estimates… 

 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

39 

25+ million DAU 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

40 

25+ million DAU 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

41 

25+ million DAU 

•  Unboxing takes time and generates  
waste… 

•  Order racked hardware 

•  Optimize network infrastructure 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

42 

25+ million DAU 

•  Unboxing takes time and generates  
waste… 

•  Order racked hardware 

•  Optimize network infrastructure 

•  Data ”overflow” (always adding disk) 

§  Backups 

§  Event data 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

What happens with scale? 

43 

25+ million DAU 

•  Unboxing takes time and generates  
waste… 

•  Order racked hardware 

•  Optimize network infrastructure 

•  Data ”overflow” (always adding disk) 

§  Backups 

§  Event data 

•  Hardware generations! (ie: hetrogenous database cluster) 

§  (Solution: background migrate users between shards based on performance heuristics!) 

Lessons learned 

 



© King.com Ltd 2013 – Commercially confidential 

Launch cleverly 

44 

•  Stakeholders on board when going live! 

•  ”Test” live and measure while doing it! 

Lessons learned 



© King.com Ltd 2013 – Commercially confidential 

Memcached 

45 

Storage 



© King.com Ltd 2013 – Commercially confidential 

 Every day is like a little 
DDOS attack 

46 



Thank you 

© King.com Ltd 2013 – Commercially confidential 47 



© King.com Ltd 2013 – Commercially confidential 

That’s it 
Questions? 
 

 

 

(We’re hiring, check out http://about.king.com/ ) 

lars.sjodin@king.com 

48 


