
Main sponsor

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

Lambda Programming Lab

Simon Ritter

Angela Caicedo

Stephen Chin

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

Setting Up

 All lab software and materials are on USB keys

– Please give them back

 Windows, Mac, Linux versions

 PDF with lab instructions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Software Install

 Install JDK8

 Unpack API documentation

 Install NetBeans

 Install JUnit NetBeans Modules

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

Lambdas and Functions

Library Review

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Lambda Expressions

 Lambda expression is an anonymous function

 Think of it like a method

– But not associated with a class

 Can be used wherever you would use an anonymous inner class

– Single abstract method type

 Syntax

– ([optional-parameters]) -> body

 Types can be inferred (parameters and return type)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Lambda Examples

SomeList<Student> students = ...

double highestScore =

 students.stream().

 filter(Student s -> s.getGradYear() == 2011).

 map(Student s -> s.getScore()).

 max();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

Method References

• Method references let us reuse a method as a lambda expression

FileFilter x = (File f) -> f.canRead();

FileFilter x = File::canRead;

FileFilter x = new FileFilter() {

 public boolean accept(File f) {

 return f.canRead();

 }

};

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

The Stream Class

 Stream<T>

– A sequence of elements supporting sequential and parallel operations

 A Stream is opened by calling:

– Collection.stream()

– Collection.parallelStream()

 Many Stream methods return Stream objects

– Very simple (and logical) method chaining

java.util.stream

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

Stream Basics

 Using a Stream means having three things

 A source

– Something that creates a Stream of objects

 Zero or more intermediate objects

– Take a Stream as input, produce a Stream as output

– Potentially modify the contents of the Stream (but don’t have to)

 A terminal operation

– Takes a Stream as input

– Consumes the Stream, or generates some other type of output

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

java.util.function Package

 Predicate<T>

– Determine if the input of type T matches some criteria

 Consumer<T>

– Accept a single input argumentof type T, and return no result

 Function<T, R>

– Apply a function to the input type T, generating a result of type R

 Plus several more

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

Using A Consumer (1)
java.util.function

interface Consumer<T> {

 public void accept(T t);

}

public void processPeople(List<Person> members,

 Predicate<Person> predicate,

 Consumer<Person> consumer) {

 for (Person p : members) {

 if (predicate.test(p))

 consumer.accept(p);

 }

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Using A Consumer (2)

processPeople(membership,

 p -> p.getGender() == Person.Gender.MALE && p.getAge() >= 65,

 p -> p.printPerson());

processPeople(membership,

 p -> p.getGender() == Person.Gender.MALE && p.getAge() >= 65,

 Person::printPerson);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Using A Return Value (1)
java.util.function

interface Function<T, R> {

 public R apply(T t);

}

public static void processPeopleWithFunction(

 List<Person> members,

 Predicate<Person> predicate,

 Function<Person, String> function,

 Consumer<String> consumer) {

 for (Person p : members) {

 if (predicate.test(p)) {

 String data = function.apply(p);

 consumer.accept(data);

 }

 }

}

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 16

Using A Return Value (2)

processPeopleWithFunction(

 membership,

 p -> p.getGender() == Person.Gender.MALE && p.getAge() >= 65,

 p -> p.getEmailAddress(),

 email -> System.out.println(email));

processPeopleWithFunction(

 membership,

 p -> p.getGender() == Person.Gender.MALE && p.getAge() >= 65,

 Person::getEmailAddress,

 System.out::println);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

The iterable Interface

 One method

– forEach()

– The parameter is a Consumer

Used by most collections

wordList.forEach(s -> System.out.println(s));

wordList.forEach(System.out::println);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

Files and Lines of Text

 BufferedReader has new method

– Stream<String> lines()

 HINT: Test framework creates a BufferedReader for you

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

Maps and FlatMaps

 One-to-one mapping

– <R> Stream<R> map(Function<? super T, ? extends R> mapper)

– mapToDouble, mapToInt, mapToLong

 One-to-many mapping

– <R> Stream<R> flatMap(

 Function<? super T, ? extends Stream<? extends R> mapper)

– flatMapToDouble, flatMapToInt, flatMapToLong

Map Values in a Stream

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

Useful Stream Methods

 collect (terminal)

 filter (intermediate)

 count (terminal)

 skip, limit (intermediate)

 max (terminal)

 getAsInt (terminal)

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

Getting Started

 Open the LambdasHOL project in NetBeans

 The exercises are configured as tests

 Edit the tests

– Remove the @Ignore annotation

 Run the tests (Ctrl F6, or from the menu)

 Make the tests pass

 Simple!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 22

Let’s Go!

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 23

Exercise 1: Solution
Print all words in a list

wordList.forEach(System.out::println);

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 24

Exercise 2: Solution
Convert words in list to upper case

List<String> output = wordList.

 stream().

 map(String::toUpperCase).

 collect(toList());

toList is a static method in the Collectors utiltity class

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 25

Exercise 3: Solution
Find words in list with even length

List<String> output = wordList.

 stream().

 filter(w -> (w.length() & 1 == 0).

 collect(toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 26

Exercise 4: Solution
Count lines in a file

long count = reader.

 lines().

 count();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 27

Exercise 5: Solution
Join lines 3-4 into a single string

String output = reader.

 lines().

 skip(2).

 limit(2).

 collect(joining());

joining is a static method in the Collectors utiltity class

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 28

Exercise 6: Solution
Find the length of the longest line in a file

int longest = reader.

 lines().

 mapToInt(String::length).

 max().

 getAsInt();

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 29

Exercise 7: Solution
Collect all words in a file into a list

List<String> output = reader.

 lines().

 flatMap(line -> Stream.of(line.split(REGEXP))).

 filter(word -> word.length() > 0).

 collect(toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 30

Exercise 8: Solution
List of words lowercased, in aphabetical order

List<String> output = reader.

 lines().

 flatMap(line -> Stream.of(line.split(REGEXP))).

 filter(word -> word.length() > 0).

 map(String::toLowerCase).

 sorted().

 collect(toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 31

Exercise 9: Solution
Sort unique lower-case words by length then alphabetically

List<String> output = reader.

 lines().

 flatMap(line -> Stream.of(line.split(REGEXP))).

 filter(word -> word.length() > 0).

 map(String::toLowerCase).

 distinct().

 sorted(comparingInt(String::length).

 thenComparing(naturalOrder())).

 collect(toList());

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 32

Exercise 10: Solution
Categorize words into a map, key is length of each word

Map<Integer, List<String>> map = reader.

 lines().

 flatMap(line -> Stream.of(line.split(REGEXP))).

 filter(word -> word.length() > 0).

 collect(groupingBy(String::length));

groupingBy is a static method in the Collectors utiltity class

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 33

Exercise 11: Solution
Gather words to map, with count of each words occurence

Map<String, Long> map = reader.

 lines().

 flatMap(line -> Stream.of(line.split(REGEXP))).

 filter(word -> word.length() > 0).

 collect(groupingBy(Function.identity(), counting()));

counting is a static method in the Collectors utiltity class

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 34

Exercise 12: Solution
Nested grouping

Map<String, Map<Integer, List<String>>> map = reader.

 lines().

 flatMap(line -> Stream.of(line.split(REGEXP))).

 filter(word -> word.length() > 0).

 collect(groupingBy(word -> word.substring(0, 1),

 groupingBy(String::length)));

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 35

