
Navigating the Stream API

Maurice Naftalin
Morningside Light Ltd

Code font??
Colour-emphasise example devt

Thank JFokus, thank you
How is this talk different from all other lambda talks? — not motivational, sharply
focussed on exploring the API from the developer’s viewpoint, test at the end.

Developer, designer, architect, teacher, learner, writer

Maurice Naftalin

Co-author
Current Projects

www.lambdafaq.org

2

Another way of saying that I don’t have a real job
8th April 2014, 208 pages

• Fundamentals

• API Overview

• Stream Operations

• Let’s Push the Boat Out!

3

Navigating the Stream API

Lame jokes, test but it’s of me

Streams – Why?

• Intention: replace loops for aggregate operations

• more concise, more readable, composable operations, parallelizable

Set<City> shortCities = new HashSet<>();

for (Person p : people) {
 City c = p.getCity();
 if (c.getName().length() < 4) {
 shortCities.add(c);
 }
}

instead of writing this:

4

Do code before 2nd bullet
I said not motivational, I’m assuming you have been to Brian’s talks,
Kool-Aid
Parallel version would be much longer - provide it?
SELECT P.NAME FROM PERSON P WHERE LENGTH(P.NAME) < 4

Streams – Why?

• Intention: replace loops for aggregate operations

• more concise, more readable, composable operations, parallelizable

Set<City> shortCities = new HashSet<>();

for (Person p : people) {
 City c = p.getCity();
 if (c.getName().length() < 4) {
 shortCities.add(c);
 }
}

instead of writing this:

Set<City> shortCities = people.stream()
 .map(Person::getCity)
 .filter(c -> c.getName().length() < 4)
 .collect(toSet());

5

we’re going to write this:

Mention method reference

Streams – Why?

• Intention: replace loops for aggregate operations

• more concise, more readable, composable operations, parallelizable

Set<City> shortCities = new HashSet<>();

for (Person p : people) {
 City c = p.getCity();
 if (c.getName().length() < 4) {
 shortCities.add(c);
 }
}

instead of writing this:

Set<City> shortCities = people.parallelStream()
 .map(Person::getCity)
 .filter(c -> c.getName().length() < 4)
 .collect(toSet());

6

we’re going to write this:

I said not motivational, I’m assuming you have been to Brian’s talks,
Kool-Aid
Parallel version would be much longer - provide it?
Generate SQL, like LINQ?

On The Other Hand...

Instead of writing

Map<City,List<Name>> namesByCity = new HashMap<>();

for (Person p : people) {
 City c = p.getCity();
 if (! namesByCity.containsKey(c)) {
 namesByCity.put(c, new ArrayList<>());
 }
 namesByCity.get(c).add(p.getName());
}

7

On The Other Hand...

Instead of writing
Map<City,List<Name>> namesByCity = new HashMap<>();

for (Person p : people) {
 City c = p.getCity();
 if (! namesByCity.containsKey(c)) {
 namesByCity.put(c, new ArrayList<>());
 }
 namesByCity.get(c).add(p.getName());
}

Map<City, List<Name>> namesByCity = people.stream()
 .collect(groupingBy(Person::getCity,
 mapping(Person::getName,Collectors.toList())));

Does this mean that streams are hard to use?
8

We’re going to write

No, it means that you’ve come to the right talk

Streams

Sequence of values

• Not a collection — may be partially evaluated or exhausted

• Like an iterator, yielding elements for processing

• Not like an iterator, not associated with any storage mechanism

• Sources: collections, arrays, generators, filesystems, strings, IO buffers,...

• Can be

- parallel

- infinite

• Primitive specialisations: IntStream, LongStream, DoubleStream

Like Unix streams

Navigating the Stream API

• Fundamentals

• API Overview

• Stream Operations

• Let’s Push the Boat Out!

The Life of a Pipeline

• Born at a source

• Successive intermediate operations
• often use lambdas/method references to transform (or drop) values

• operation itself returns a new stream that will carry transformed values

• Dies at a terminal operation
• terminal operations “pull” values down the pipeline

11

Terminal

Stateless Stateful

filter
map
flatMap
peek

distinct
limit
substream
sorted

Reduction

reduce
min,max
count

Search
anyMatch
allMatch
findAny
findFirst

forEach
forEachOrdered

MutableReduction
collect
toArray

Stream Operations – the Map

SM: sorted different
because must collect all
values before proceeding

therefore fails
completely on an infinite

Intermediate

• Fundamentals

• API Overview

• Stream Operations

• Intermediate Stateless Operations

• Let’s Push the Boat Out!

Navigating the Stream API

Intermediate Operations

• return new Streams

• lazy: they create a new Stream, not new elements

Stream<City> cities =
people.stream()
 .map(p -> p.getCity());

14

x0 y0x1 y1x2 x3

Visualizing Stream Operations

darken the streams!

SM: explain why flying
off (and make flying off
work!)

For visual learners
But note: principle of processing mode equality

x2

Visualizing Stream Operations

x0

y0

x1
y1

x3
y2

y3

16

x0

x1

x2

x3

This neat picture is not realistic!
No guarantees on ordering beyond what’s required to
maintain the semantics of the the operation.

Interference

x0

y0

x1

x2

y3

17

y1

✗

x0

x1
y1

x3x3

API documentation says don’t do this, ever. In fact, no-one
should fritz with the source of an executing pipeline, unless
it’s concurrent.
Prime directive

name returns interface used l signature
filter Stream<T> Predicate<T> T ➞ boolean
map Stream<U> Function<T,U> T ➞ U
flatMap Stream<R> Function<T,Stream<R>> T ➞ Stream<R>
peek Stream<T> Consumer<T> T ➞ void

Stateless Intermediate Operations

18

mapToInt IntStream ToIntFunction<T> T ➞ int
mapToLong LongStream ToLongFunction<T> T ➞ long
mapToDouble DoubleStream ToDoubleFunction<T> T ➞ double

only the type bounds, here and everywhere in the talk
filter takes Predicate<? super T> etc

✖

filter(s	
 -­‐>	
 s.length()	
 <	
 4)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Stream<String>

Predicate<String>

“bill”

Stream<String>

filter()

19

“jim”

✔

“amy”

map()

map(Person::getCity)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Stream<Person> Stream<City>

Function<Person,City>

Londonbill Athensamy

flatMapToInt()

Stream<String>

Func>on<String,IntStream>

IntStream

'a' 'm' 'y'

flatMapToInt(String::chars)

It’s ok to hold the input value inside the blue box temporarily — it’s never mutated,
so just a convenient visual notation

Navigating the Stream API

• Fundamentals

• API Overview

• Stream Operations

• Intermediate Stateful Operations

• Let’s Push the Boat Out!

name returns type used l signature

limit Stream<T> long

substream Stream<T> (long, long)

sorted Stream<T> Comparator<T> (T, T) ➞ int

distinct Stream<T>

Stateful Intermediate Operations

24

x2

x0

x1

x3

x0

x1

x2

x3

Visualizing Stream Operations

y0

y1

y2

y3

Stateless

Stateful

z0

z0

z1 z2 z3

Not all of them, of course

25

Visualizing Stream Operations

3

1

4

2

sorted()

Sorted is always a barrier
Not all of them, of course

Navigating the Stream API

• Fundamentals

• API Overview

• Stream Operations

• Terminal Operations

• Let’s Push the Boat Out!

Terminal Operations

• return non-Stream values

• typically eager: they force evaluation of their stream

Set<City> cities =
people.stream()
 .map(p -> p.getCity())
 .collect(toSet());

27

Result is a non-stream value

OptionalInt

Reduction by Accumulation

IntStream

IntBinaryOperator

24

28

(a,b) -> a* b
32

6

4

reduce((a,b)	
 -­‐>	
 a*b)	
 	
 	
 	
 	
 	
 	
 	
 	

Note exhaustion of input stream
Traditional FP way of thinking about reduction
BUT: every reduction must be doable in parallel

Reduction by Merging

29

z0

reduce((a,b) -> a*b)
2

4

1

3
6

24

With larger set, lots of parallel working, (finally must
be serialised, of course)
There must be a symmetric variant of any reduction

Reduction Operations

name returns interface used l signature
reduce Optional<T> BinaryOperator<T> (T, T) ➞ T
min, max Optional<T> Comparator<T> (T, T) ➞ int

count long

30

another overload of reduce also
takes an accumulator function, but
there is no overload with only an

accumulator function

primitive versions have others eg sum and statistics

Mutable Reductions

• What is a collector?

• aggregates values of type T into a container, of type R

• A is an intermediate type, used to accumulate T values before they are
“finished” into an R

• for example, StringBuilder is used an intermediate type when Strings
are joined

31

public	
 <R,A>	
 R	
 collect(Collector<T,A,R>)

Mutable reductions collect the values of a stream into a “container”

also toArray
A is often an implementation detail

Collecting

Stream<Person>

Collectors.toSet()

Set<Person>
{ , , }

people.stream().collect(Collectors.toSet())	

amybilljon

Collector<Person,?,Set<Person>>

Why is there an extra
step? Either because
there is a finishing
function (not shown) or
because there is going to
be a subsseqent parallel
merge (not shown)

Collectors

• Mostly you’ll use predefined Collectors

• Factory methods in the java.util.stream.Collectors

• counting

• summing/averaging/summarizing (for each of int, long, double)

• joining (for Strings)

• toList/Map/Set

• reducing

• groupingBy(x3)

• mapping
33

Think of the container in each case

Collectors.groupingBy(Function classifier)

3435

Map<City,List<Person>> peopleByCity =
 people.stream().collect(Collectors.groupingBy(Person::getCity));

Uses the classifier function to make a classification mapping

Persons are classified according to the City that classifier gives them;
same-classified Persons are put into a List

For example, use Person.getCity() to make a Map<City,List<Person>>

List is the default

groupingBy(Function classifier)

Stream<Person>

groupingBy() Map<City,List<Person>>

bill

jon

amy Athens []

35

[,]

bill

[]

amyjon

London

Collector<Person,?,Map<City,List<Person>>

Classifier

Person→City

Justify generics in
Collector (SM: this is
hard enough to justify
separate treatment)

What if you don’t want to put them into a List, though?

3635

Map<City,Set<Person>> peopleByCity =
people.stream().collect(Collectors.groupingBy(Person::getCity,toSet()));

Uses the classifier function to make a classification mapping

Persons are classified according to the City that classifier gives them;
same-classified Persons are put into

a container defined by the downstream collector

For example, use Person.getCity() to make a Map<City,Set<Person>>

groupingBy(Function classifier,Collector downstream))

groupingBy(Function classifier,Collector downstream))

Stream<Person>

groupingBy()
Map<City,Set<Person>>

bill

jon

amy

London

Athens { }

amy

37

Classifier

Person→City

Stream<Person>

Downstream
Collector

—
toSet()

{ , }

billjon

Each T goes to the collector for its classification key

mapping(Function mapper,Collector downstream))

38

Set<City> inhabited =
people.stream().collect(Collectors.mapping(Person::getCity,toSet()))

Adapts a Collector accepting elements of one type
to one accepting elements of another

by applying a mapping function to each input element
before accumulation by the downstream collector.

API documentation

mapping(Function mapper,Collector downstream))

London
Stream<Person>

mapping()

bill

jon

amy

{ ,
 }

amyjonbill

39

AthensAthens

LondonLondon
Mapper

Person→City

Downstream
Collector

—
toSet()

Stream<City>

Set<City>

Question to BG: Why no overload with
default collector?

SM: Stupid example, you would just use an upstream map(). Maybe leave, but
explain useful as downstream collector, see examples at end.

Navigating the Stream API

• Fundamentals

• API Overview

• Stream Operations

• Let’s Push the Boat Out!

From a stream of Person, compute

• List of the adults

• Set of ages of the adults

• Listing of people by age

• Population by age

• Names by age

• Most popular age

• Bonus: Most popular ages

Some Problems

First 5 doable from presentation, 6th needs something
more
Bonus is a “problem for the reader”
Mavens: help out, but only if...

List<Person>	
 adults	
 =
	
 	
 	
 	
 	
 	
 	
 	
 people.stream()
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .filter(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .collect(toList());

List of adults (age > 21)

Problem 1

✘
18

p	
 -­‐>	
 p.getAge()	
 	
 >	
 18

Assuming static imports of Collectors factory methods
Building next problems up from previous ones

Problem 2

Set<Integer> adultAges =
 people.stream()
 .filter(p -­‐> p.getAge() > 21)
 .collect(toList());

Set of ages of the adults

Problem 2

Set<Integer> adultAges =
 people.stream()
 .filter(p -­‐> p.getAge() > 21)

 .collect(toList());

Set of ages of the adults

SM: Fade or
strikethrough the old
code

Set of ages of the adults

Problem 2

Set<Integer> adultAges =
 people.stream()
 .filter(p -­‐> p.getAge() > 21)

 .map(Person::getAge)
 .collect(toList());

Problem 2

Set<Integer> adultAges =
 people.stream()
 .filter(p -­‐> p.getAge() > 21)

 .map(Person::getAge)
 .collect(toSet());

Set of ages of the adults

People by Age

Problem 3

Map<Integer,List<Person>> peopleByAge =
 people.stream()
 .filter(p -> p.getAge() > 21)

 .map(Person::getAge)
 .collect(toSet());

SM: overall comment —
introduce Collectors
properly

Can we keep any of this? (No)

People by Age

Problem 3

Map<Integer,List<Person>> peopleByAge =
 people.stream()
 .filter(p -> p.getAge() > 21)

 .map(Person::getAge)
 .collect(groupingBy(??));

People by Age

Problem 3

Map<Integer,List<Person>> peopleByAge =
 people.stream()
 .filter(p -> p.getAge() > 21)

 .map(Person::getAge)
 .collect(groupingBy(Person::getAge));

People by Age

Problem 3

Map<Integer,List<Person>> peopleByAge =
 people.stream()
 .collect(groupingBy(Person::getAge));

Population by Age

Problem 4

Map<Integer,Long> populationbyAge =
 people.stream()
 .collect(groupingBy(Person::getAge));

Population by Age

Problem 4

Map<Integer,Long> populationByAge =
 people.stream()
 .collect(groupingBy(Person::getAge,

 ??));

Population by Age

Problem 4

Map<Integer,Long> populationByAge =
 people.stream()
 .collect(groupingBy(Person::getAge,

 counting()));

Names by Age

Problem 5

Map<Integer,List<Name>> namesByAge =
 people.stream()
 .collect(groupingBy(Person::getAge,

 counting()));

Names by Age

Problem 5

Map<Integer,List<Name>> namesByAge =
 people.stream()
 .collect(groupingBy(Person::getAge,

 ??));

Names by Age

Problem 5

Map<Integer,List<Name>> namesByAge =
 people.stream()
 .collect(groupingBy(Person::getAge,

 mapping(??	
 ,	
 ??)));

Names by Age

Problem 5

Map<Integer,List<Name>> namesByAge =
 people.stream()
 .collect(groupingBy(Person::getAge,

 mapping(Person::getName,toList())));

Problem 6

Most Popular Age

Optional<Integer> modalAge = populationByAge
 .entrySet()
 .stream()
 .max(Entry.comparingByValue())
 .map(Entry::getKey);

populationByAge is Map<Integer,Long>

 Optional<Set<Integer>> modalAges = populationByAge
 .entrySet()

 .stream()
 .collect(groupingBy(Entry::getValue, mapping(Entry::getKey, toSet())))
 .entrySet()
 .stream()
 .max(Entry.comparingByKey())
 .map(Entry::getValue);

Problem 7

Most Popular Ages

• Collections processing with streams looks very different

• But the payoff is huge!

• Need to learn to think differently – but it’s not that hard!

Summary

If you’re invested in Java, this is a great development
Speaking as a person who’s written on the two big language changes Java 5
and Java 8

• Brian Goetz talk @ JavaOne 2014 (parleys.com) http://goo.gl/OEjk1h

• State of the Lambda, Libraries Edition

http://cr.openjdk.java.net/~briangoetz/lambda/lambda-libraries-final.html

• java.util.stream API package documentation

• Lambda FAQ (http://lambdafaq.org) – collections material coming real soon!

• Out now: Functional Programming in Java, Venkat Subramaniam

• Out soon—honestly!

• Java 8 Lambdas in Action, Raoul Urma, Mario Fusco, Alan Mycroft (Mannning, early access)

• Java 8 Lambdas: Pragmatic Functional Programming, Richard Warburton

• Mastering Lambdas: Java Programming in a Multicore World, Maurice Naftalin

Resources

Navigating the Stream API

Questions?

