

TypeScript Playground

http://www.typescriptlang.org/Playground/

IE F12

SkyDrive

Napa Office 365

Azure Web Sites

Our Journey (Part 1)

We enjoy programming
in JS*

*But we had some concerns

static “pessimistic” dynamic “optimistic”

Application Scale JavaScript?

forgiving!

Pains

Need to come up with “compensating”
patterns for classes and modules/namespaces

Need patterns for managing callbacks

“JavaScript code ‘rots’ over time” --Ben

“Writing JavaScript code in a large

project is like carving code in stone”

--Alex

TypeScript to rescue

TypeScript is a super set of JavaScript

Compiler / Library works cross browser

TypeScript is open source

Writing better JavaScript

Formalization of common JavaScript patterns

Type inference and structural typing

Works with existing JavaScript libraries

TypeScript Type Definitions

https://github.com/borisyankov/DefinitelyTyped

Our Journey (Part 2)

Growing Pains

Managing scripts and their order

“our dependency graph was such a mess that each

area had a dependency on just about every other

area.” – Nick (from another project)

Growing Pains: Dependencies…

Growing Pains: Eager loading

Solution: AMD

A module/file must declare what other
modules it requires in order to function

define id ‘moduleA' function

// code goes here

TypeScript: External Modules

TypeScript supports code generation for
CommonJS and the AMD module systems

tsc --module amd app.ts

tsc --module commonjs HttpServer.ts

import require 'vs/base/lib/winjs'

import = require('vs/editor/zoneWidget');

Before/After

AMD in JavaScript

define([‘…./winjs.base‘, ‘…./zoneWidget’],

function(WinJS, ZoneWidget) { … }

);

TypeScript (AMD or CommonJS)

import require 'vs/base/lib/winjs'

import = require('vs/editor/zoneWidget');

AMD Applied

Support à la carte consumption

Express CSS dependencies as well

/// <amd-dependency path=“vs/css!./actionbar” />

After the AMD Migration
Impressions

fresh

“Happy - no more globals, no

more cyclic dependencies,

faster startup” -Dirk

Lazy Loading Contributions

csharp.ts
export class CSMode extends

modesExtensions.AbstractMode {

constructor() {

super('vs.languages.csharp');

}

// lots of code ….

}

csharp.contribution.ts
modeRegistry.registerMode(

[‘text/x-csharp'],

new Platform.Descriptor(

'vs/languages/csharp',

‘CSMode')

);

Our Journey (Part 3)

Componentization

Reuse TypeScript code as ‘binary’ JS
components with a declarations file

Example using TypeScript language services as
a component

tsc –declarations –out typescriptservices.js typescript.ts

API

Type the API surface

JSDoc the API

100% TypeScript

Migration is also code clean-up, but real work

“As I did conversions, I began typing various object literals I was passing

around as interfaces. Soon enough, I realized how inconsistent I was, the same

data was flowing around in at least 3 different formats. This is because of the

easiness through which you can create literals in JavaScript …. Need some

placeholder for data?... Just create a new literal object.” --Alex

“In JavaScript, you are really at the mercy of your ability to spell. “

delete this.markers[range.statMarkerId]; //start

--Joao

TS Retrospective

bleeding edge

do it again

http://www.typescriptlang.org/

Monaco Channel9 Series

Jgalloway’s blog post

Monaco Links

http://channel9.msdn.com/series/visual-studio-online-monaco
http://weblogs.asp.net/jgalloway/archive/2013/11/13/a-quick-look-at-the-new-visual-studio-online-quot-monaco-quot-code-editor.aspx

Thanks!

