
Brand Guidelines
Version 1
10.21.2013

Deploying Docker to Prod Scale

Ken Sipe, Cloud Solution Architect
ken@mesosphere.io @Mesosphere

Cloud Solution Architect
Developer: Embedded, C++, Java, Groovy, Grails, C#, Objective C
Cloud R&D Researcher
Speaker: JavaOne 2009 Rock Star, NFJS, JAX

@kensipe

ken@mesosphere.io

Workshop

• Labs: Docker

• Labs: Mesos

• GCE / DO

Expectations

• Docker Installed

• Mesos

• digitalocean.mesosphere.com

• google.mesosphere.com

• USB

Agenda

• Legacy Datacenter

• Datacenter Trends

• Datacenter Goals

• Mesosphere

• Demos

Chris Aniszczyk:

 “When is the last time you’ve seen the fail whale on twitter?”

Datacenters

Perfect Storm

Today’s Legacy Datacenter

Challenge: Static Partitioning

Provision VMs in the cloud or on physical servers

Today’s Legacy Datacenter

Install Hadoop on a static set of machines

Installing an Application with Static Partitioning

Install Web Server on a static set of machines

Installing an Application with Static Partitioning

Scale up Hadoop manually

Resizing an Application with Static Partitioning

Challenge: Humans Involved!

Challenge: Known IP and Port for Resource

What if your Laptop was operated like your Data Center?

Challenge: Resource Utilization

From Static Partitioning to Elastic Sharing

Static Partitioning

Elastic Sharing

WEB HADOOPCACHE

WASTED

FREEFREE
HADOOP

WEB

CACHE

WASTED WASTED
100% —

100% —

Google Borg

http://www.wired.com/wiredenterprise/2013/03/google-borg-twitter-mesos/all/

Challenge: Time to Production

Continuous Delivery / DevOps

Challenge: Continuous Delivery

• Virtual Machine / Stage Provisioning

Challenge: Virtual Machines

Challenge: Virtual Machines

• Large / Heavy Solution

• No Meta-Data

• Re-provisioned For Each Environment

Issues with Statically Partitioned Data Centers

Complex 
Machine sprawl, manual resize/scale

Fragile 
No software failure handling, “black box”

Inefficient  
Static partitioning, overhead

Not Developer-Friendly 
Long time to roll out software, development starts at the machine level

Perfect Storm

Trends in Datacenters

New Class of Applications

Elastic Partitioning

Containers

Micro-Services Architecture

Applications in the Cloud Era

Cloud Era: 
Big apps, small servers

Client-Server Era: 
Small apps, big servers

Server

Virtualization

App App App App
App

Aggregation

Serv Serv Serv Serv

Aggregation

Mesosphere aggregates resources, makes a data center look like one big computer
Mesosphere runs on top of a VM or on bare metal

From Static Partitioning to Elastic Sharing

Static Partitioning

Elastic Sharing

WEB HADOOPCACHE

WASTED

FREEFREE
HADOOP

WEB

CACHE

WASTED WASTED
100% —

100% —

Containers

• Immutable Containers

Kubernetes

https://github.com/GoogleCloudPlatform/kubernetes

https://github.com/mesosphere/kubernetes-mesos

Monorail => Micro Services

• Peak Hours

• Web Traffic 75%

• Analytics 25%

• Off Peak Hours

• Web Traffic 25%

• Analytics 75%

Process Isolation

Containers

Containers

VirtualBox

boot2docker

docker OS X client

boot2docker

Docker Version

Docker Containers

Container Lifecycle

• docker run

• docker stop

• docker start

• docker restart

• docker kill

• docker attach

Container Info

• docker ps

• docker inspect

• docker logs

• docker port

• docker top

• docker diff

Docker Run (port map)

Docker Demo: Running

Docker Images

Image Lifecycle

• docker images

• docker build

• docker commit

• docker rmi

• docker tag

Docker Registry

• docker login

• docker search

• docker pull

• docker push

Docker Pull

Docker Repository

Docker Repository

Docker Pull (run couchDB)

Docker diff

Docker Image DAGs

Common Docker Exes

Command Prompt in a Docker

docker run -it ubuntu /bin/bash

docker run -it ubuntu

Run in Background

docker run -d -P redis

Common What’s Running Commands

• Running

• docker ps

• Just SHA

• docker ps -q

• Last Run

• docker ps -l

• Last Run SHA

• docker ps -l -q

Killing Containers

• With SHA

• docker kill <sha>

• All Running

• docker kill $(docker ps -q)

• Last Run

• docker kill $(docker ps -la)

Demo + Labs

Dockerfiles

1. MAINTAINER

2. RUN

3. ADD

4. CMD

5. EXPOSE

6. ENTRYPOINT:

7. WORKDIR

8. ENV

9. USER

10. VOLUME

MAINTAINER <author name>

RUN <command>

ADD <src> <destination>

CMD ["executable","param1","param2"]

EXPOSE <port>;

ENTRYPOINT [‘executable’, ‘param1’,’param2’]

WORKDIR /path/to/workdir

ENV <key> <value>

USER <uid>

VOLUME [‘/data’]

Docker Build File Labs

Mesosphere

What is Mesosphere?

Mesosphere

• Mesosphere Chronos

• HAProxy

• Docker Support

What is Mesos?

Mesos is…

• Open Source Apache project

• Cluster Resource Manager

• Scalable to 10,000 of nodes

• Fault Tolerant

Mesos lets you treat a closer of nodes…

As one big computer

Not as individual
machines Not as VMs

But as computational resources
like cores, memory, disks, etc.

Just like a cell is a crucial building
block of a larger system

But the thing we see and care
about is their aggregate as an

organism

This is what Mesosphere lets us do
with clusters

“We wanted people to be able to
program for the datacenter just like
they program for their laptop”

— Benjamin Hindman,
Apache Mesos PMC Chair

What is Mesos?

Mesos - Overview

• Mesos Master

• Framework Scheduler (Driver)

• Mesos Slave

• Isolation, Reporting

• Framework Executor

Mesos Framework Overview

Master 2

Master 1

Master 3

Slave

Slave

Slave

Slave Slave

Slave Slave

Slave Slave

ZK 2

ZK 1

ZK 3

Driver:
Elastic
Search

Driver:
Marathon SlaveSlave Slave

Mesos Framework Components

1. resourceOffers()
2. launchTasks()

3. launchTask() 4. statusUpdate()

5. statusUpdate()

Mesos Slave

Executor

Mesos Master

Scheduler

Task Task

Like an OS kernel
You rarely interact directly with

Mesos …

Like an OS kernel
You rarely interact directly with

Mesos …
You interact with Mesos

Frameworks on top of Mesos

The UNIX Operating System Stack

SSHd

Linux, BSD

MySQLApache

Kernel

ApplicationsMemcached

Init, Upstart, Systemd Init System

The Mesosphere Operating System Stack

Memcached

Mesos

RedisRails

Kernel

ApplicationsElasticsearch

Marathon Init System

Mesosphere Stack

Kernel Mesos

Spark, Storm, Hadoop,
ElasticSearch, MPI

Batch REST API
“Chronos” (~cron)

Services REST API
“Marathon” (~init)

Rails, Kafka, Play!
(any that runs on Linux)

Mesos SDK
Java, Python, C++, Go

Recurring Jobs
ETL, Hadoop, Backups

API

Apps

Hardware Server Server Server Server Server Server Server

Native Long Running/Linux Batch/Linux

Mesosphere Value Propositions

Fault Tolerance through Automatic Software/Hardware Failure Handling

Simplified Operations - Homogenous Layer Supporting Diverse Infrastructure

Up to 65% Hardware Cost Savings

Efficiency and Productivity Gains Enable New Elastic Applications

Mesos Frameworks

Case Study: Airbnb - Chronos

Mesos on 4,000+ cores

Entire Analytics Built on Mesos: Hadoop, Storm, Kafka, Cassandra, …

Quick Rollout of New Applications

More Automation, Less People to Manage Servers

Apache Spark Framework

• Apache Spark vs. Hadoop

• 100x faster in memory

• 10x faster on disk

• Jobs in Java, Scala or Python

What is Marathon?

“Init Daemon” for the data center

• Runs any Linux binary without modification (e.g. Rails, Tomcat, …)

• Cluster-wide process supervisor

Private PaaS

• Service discovery

• Automated software and hardware failure handling

• Deployment and scaling

Writing your own Framework

• Sophisticated scheduling algorithms and
policies

• Sophisticated scale policies

• Advanced task semantics

Case Study: Large Hedge Fund

• Trading algorithms on Mesos

• 20,000 cores

• Better algorithm gets better weighted
processing time!

Mesosphere & Marathon in Action

What does Mesos Do for Me?

• Task distribution, launching, monitoring,
failure detection, killing and cleanup

• Resource Isolation with containers

Marathon Workflow

3.foo.com1.foo.com 2.foo.com

Rails Rails

Mesos

Marathon

POST /v2/apps

Marathon Workflow

1.foo.com 3.foo.com2.foo.com

Rails Rails

Mesos

Marathon

POST /v2/apps

Play

Play

Marathon API - Launching Self-Contained Apps

• Command to start the app
• URL(s) to the app archive/configuration
• Environment variables 

POST /v2/apps
{
 “id”: “Play”,
 “uris”: [“http://downloads.mesosphere.io/tutorials/PlayHello.zip”]
 “cmd”: “./Hello-*/bin/hello -Dhttp.port=$PORT”,
 “env”: {“SECRET”: “password123”}
}

Marathon API - Launching Dockers

• Starting with Mesos 0.20 containers are 1st class citizens

POST /v2/apps
{
 “id”: “Cassandra”,
 “container”: {
 “image”: “docker:///mesosphere/cassandra:2.0.6”,
 “options”: [“-v”, “/mnt:/mnt:rw”, “-e”, “CLUSTER_NAME=prod”]
 }
}

Marathon API - Scaling Apps

• Just tell Marathon how many you want!

PATCH /v2/apps/Play
{
 “instances”: 4
}

Marathon Service Discovery Design Goals

Be as simple as connecting to a host and port with TCP

Discovery should happen transparently, don’t require special clients

No retry logic required in the client

Registration out-of-band, to support any app without modification

Real-time failover

Marathon Service Discovery with HAProxy

Apps available on localhost & known port

HAProxy updates via Marathon REST API

HAProxy runs on every cluster node

Configurable policies
Rails

HAProxy

Rails

HAProxy

SQL

HAProxy

Search Search

HAProxy

Cache

Marathon

Other Service Discovery Options

Poll the REST API 
GET /v2/tasks  
This is what HAProxy does 

Push via event handlers 
Marathon pushes events to any HTTP endpoint 
Can be used with hardware load balancers

Marathon Roadmap

Configurable health checks (TCP, HTTP, HTTPS) [DONE]

App versioning [DONE]

Deployment orchestration features

App groups & dependencies

Elasticity and Resource Sharing

Web
Server

Elasticity and Resource Sharing

Web
Server

Elasticity and Resource Sharing

Web
Server

Hadoop

Elasticity and Resource Sharing

Web
Server

Hadoop

Elasticity and Resource Sharing

Web
Server

Hadoop

Elasticity and Resource Sharing

Web
Server

Hadoop

Elasticity and Resource Sharing

Web
Server

Hadoop

Accumulo

Handling Failure

Web
Server

Hadoop

Accumulo

Handling Failure

Web
Server

Hadoop

Accumulo

Handling Failure

Web
Server

Hadoop

Accumulo

Web
Server

Hadoop

Accumulo

EC2

Adding Capacity (in the Cloud)

Web
Server

Hadoop

Accumulo

EC2

Adding Capacity (in the Cloud)

DCOS DEMO

http://google.mesosphere.io

Mesosphere

Brand Guidelines
Version 1
10.21.2013

Thank you.

