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Event-sourcing

Is all about getting  
the facts straight
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Databases are  
shared mutable state



Concert 

artist: String 
date: Date 
availableTickets: int 
price: int 
... 

TicketOrder 

noOfTickets: int 
userId: String 

1 *

Typical entity modelling
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Congratulations, you are 

LOSING DATA EVERY DAY

Update or delete statements in your app?
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Event-sourced modelling
ConcertCreated 

artist = Aerosmith 
availableTickets = 100 
price = 10 
... 

PriceChanged 

price = 100 

OrderCancelled 

userId = 1

TicketsOrdered 

noOfTickets = 3 
userId = 1

Canceling an order

time

TicketsOrdered 

noOfTickets = 3 
userId = 1

TicketsOrdered 
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Event-sourced modelling
‣ Immutable events 
‣ Append-only storage (scalable) 
‣ Replay events: reconstruct historic state 
‣ Events as audit mechanism 
‣ Events as integration mechanism



Events: where from?

Event-sourcing: capture all changes to 
application state as a sequence of events



Events&Commands
Do something (active)

It happened. 
Deal with it.  
(facts)

Can be rejected (validation)

Can be responded to



Querying & event-sourcing
How do you query a log?



Querying & event-sourcing

Command
Query
Responsibility
Segregation

How do you query a log?



CQRS without ES

UI/Client

Service layer

Database

Command Query



CQRS without ES

UI/Client

Service layer

Database

Command Query

UI/Client

Command 
Model

Datastore

Query 
Model(s)

DatastoreDatastoreDatastore

Command Query

?



Event-sourced CQRS

UI/Client

Command 
Model

Journal

Query 
Model(s)

DatastoreDatastoreDatastore

Command Query

Events



Actors
‣ Mature and open source 
‣ Scala & Java API 
‣ Akka Cluster



Actors
"an island of consistency in a sea of concurrency"

Actor 

mailbox

state

behavior

async message 
send

Process message: 
‣ update state 
‣ send messages 
‣ change behavior 
Don't worry about  
concurrency



Actors
A good fit for event-sourcing?

Actor 

mailbox

state

behavior

mailbox is non-durable 
(lost messages)

state is transient



Actors
Just store all incoming messages?

Actor 

mailbox

state

behavior

async message 
send

store in journal

Problems with 
command-sourcing: 
‣ side-effects 
‣ poisonous 

(failing) messages 



Persistence
‣ Experimental Akka module 
‣ Scala & Java API 
‣ Actor state persistence based 

on event-sourcing



Persistent Actor
PersistentActor 

actor-id 

event

async message 
send (command)

‣ Derive events from  
commands 

‣ Store events 
‣ Update state 
‣ Perform side-

effects 

journal (actor-id)

event

state



Persistent Actor
PersistentActor 

actor-id 

event

Recover by replaying 
events, that update the 
state (no side-effects) 

journal (actor-id)

event

state



Persistent Actor
case object Increment     // command 
case object Incremented   // event 

class CounterActor extends PersistentActor { 
  def persistenceId = "counter" 

  var state = 0 

  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
  } 

  val receiveRecover: Receive = { 
    case Incremented => state += 1 
  } 
}
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async callback 
(but safe to close 
over state)
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Persistent Actor
case object Increment     // command 
case object Incremented   // event 

class CounterActor extends PersistentActor { 
  def persistenceId = "counter" 

  var state = 0 

  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
  } 

  val receiveRecover: Receive = { 
    case Incremented => state += 1 
  } 
}

Isn't recovery 
with lots of events  
slow?



Snapshots
class SnapshottingCounterActor extends PersistentActor { 
  def persistenceId = "snapshotting-counter" 

  var state = 0 

  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
    case "takesnapshot" => saveSnapshot(state) 
  } 

  val receiveRecover: Receive = { 
    case Incremented => state += 1 
    case SnapshotOffer(_, snapshotState: Int) => state = snapshotState 
  } 
}



Snapshots
class SnapshottingCounterActor extends PersistentActor { 
  def persistenceId = "snapshotting-counter" 

  var state = 0 

  val receiveCommand: Receive = { 
    case Increment => persist(Incremented) { evt => 
      state += 1 
      println("incremented") 
    } 
    case "takesnapshot" => saveSnapshot(state) 
  } 

  val receiveRecover: Receive = { 
    case Incremented => state += 1 
    case SnapshotOffer(_, snapshotState: Int) => state = snapshotState 
  } 
}



Snapshot&Journal
Cassandra

KafkaKafka

HBase

DynamoDB

MongoDB

HBase

EventStore

JDBC JDBC

Cassandra

MongoDB

Plugins:

EventStore



Default: Java serialization

Pluggable through Akka: 
‣ Protobuf 
‣ Kryo 
‣ Avro 
‣ Your own

Plugins:
Serialization



Persistent View
Persistent 

Actor 

journal 

Persistent 
View 

Persistent 
View 

Views poll the journal 
‣ Eventually consistent 
‣ Polling configurable 
‣ Actor may be inactive 
‣ Views track single 

persistence-id 
‣ Views can have own 

snapshots 
snapshot store 

other 
datastore



Persistent View
case object ComplexQuery 
class CounterView extends PersistentView { 
  override def persistenceId: String = "counter" 
  override def viewId: String = "counter-view" 
  
  var queryState = 0 
   
  def receive: Receive = { 
    case Incremented if isPersistent => { 
      queryState = someVeryComplicatedCalculation(queryState) 
      // Or update a document/graph/relational database 
    } 
    case ComplexQuery                => { 
      sender() ! queryState; 
      // Or perform specialized query on datastore 
    } 
  } 
 } 
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case object ComplexQuery 
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Sell concert tickets
ConcertActor 

price 
availableTickets 
startTime 
salesRecords 

Commands: 
CreateConcert 
BuyTickets 
ChangePrice 
AddCapacity

journal

ConcertHistoryView 

0
15
30
45
60

$50 $75 $100

0
50

100

code @ bit.ly/akka-es



Scaling out: Akka Cluster

Cluster node Cluster node Cluster node 

Persistent 
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Persistent 
Actor 

id = "2"

Persistent 
Actor 
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Persistent 
Actor 

id = "3"

Single writer: persistent actor must be singleton, views may be anywhere

distributed journal
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Persistent 
Actor 

id = "2"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "3"

Single writer: persistent actor must be singleton, views may be anywhere

How are persistent actors distributed over cluster?

distributed journal



Scaling out: Akka Cluster

Cluster node Cluster node Cluster node 

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "2"

Persistent 
Actor 

id = "1"

Persistent 
Actor 

id = "3"

Sharding: Coordinator assigns ShardRegions to nodes (consistent hashing) 
                 Actors in shard can be activated/passivated, rebalanced

Shard 
Region

Shard 
Region

Shard 
Region

Coordinator

distributed journal



Design for event-sourcing



DDD:    Domain Driven Design 
DDD+CQRS+ES
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DDD:    Domain Driven Design 
DDD+CQRS+ES

Aggregate  Aggregate  Eventual 
Consistency

Fully consistent Fully consistent

Akka Persistence is not a DDD/CQRS framework
But it comes awfully close

Root entity

entityentityentity

Root entity

entity entity

Persistent 
Actor 

Persistent 
Actor 

Message 
passing
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Focus on events 
Structural representation(s) follow ERD
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Designing aggregates
Focus on events 
Structural representation(s) follow ERD

Size matters. Faster replay, less write contention 
                          Don't store derived info (use views)

With CQRS read-your-writes is not the default 
When you need this, model it in a single Aggregate 
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‣ Self-contained 
‣ Unit of atomic change 
‣ Granularity and intent
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Designing commands
‣ Self-contained 
‣ Unit of atomic change 
‣ Granularity and intent

UpdateAddress 
street = ... 

city = ... vs

ChangeStreet 
street = ... 

ChangeCity 
street = ... 

Move 
street = ... 

city = ... vs
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Versioning

event v1

event v1

event v2

event v2

Actor logic: 
v1 and v2

event v1

event v1

event v2

event v2

event v2

event v2

Actor logic: 
v2

event v1

event v1

event v2

event v2

snapshot

Actor logic: 
v2

‣ Be backwards 
compatible 

‣ Avro/Protobuf 
‣ Serializer can do 

translation 

‣ Snapshot 
versioning: 
harder 
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In conclusion
Akka Actors & Akka Persistence

A good fit for 
event-sourcing

PersistentActor 
actor-id 

async message 
send 
(command)

journal (actor-id)

event
event

state

Experimental, view 
improvements needed



Thank you. 

code @ bit.ly/akka-es
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