
A detailed look at J9’s approach to MethodHandle compilation

Dan Heidinga, J9 Virtual Machine Team Lead
@DanHeidinga
2015-02-02

MethodHandle compilation
pipeline

Important disclaimers

� THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

� WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED.

� ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

� ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

� IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

� IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE
USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

� NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

– CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR
THEIR SUPPLIERS AND/OR LICENSORS

2

Who am I?

� I've been involved with virtual machine development at IBM since
2007 and am now the J9 Virtual Machine Team Lead. J9 is IBM's
independent implementation of the JVM.

� I've represented IBM on both the JSR 292 ('invokedynamic') and
JSR 335 ('lambda') expert groups and lead J9's implementation of
both JSRs.

� I also maintain the bytecode verifier and deal with various other
parts of the runtime.

3

MethodHandle? What’s that?

4

J9’s MethodHandle hierarchy

� Original prototype had 1 class: MethodHandle
– “kind” field to determine which operation
– “type” field to hold the MethodType
– “vmSlot” field to hold the address, offset, vtable or itable index

� Grab bag of data necessary to support field access and method sends

� 2 major problems with this approach

5

M
et

ho
dH

an
dl

e

J9’s MethodHandle hierarchy

� Original prototype had 1 class: MethodHandle
– “kind” field to determine which operation
– “type” field to hold the MethodType
– “vmSlot” field to hold the address, offset, vtable or itable index

� Grab bag of data necessary to support field access and method sends

6

M
et

ho
dH

an
dl

e
http://commons.wikimedia.org/wiki/File:MudBall03.jpg
Public domain.

http://commons.wikimedia.org/wiki/File:MudBall03.jpg

J9’s MethodHandle hierarchy

� Hierarchy that separates each MH kind into its own class

� Each MH subclass describes the data needed by the MH

� JITs look at the class rather than the ‘kind’ instance field
– Provides a place to put specialized behaviour

7

M
et

ho
dH

an
dl

e

Direct ReceiverBound

Indirect

Virtual

Interface

Constructor

Field

FieldGetter

FieldSetter

StaticFieldGetter

StaticFieldSetter

Collect

DynamicInvoker

FilterArguments

Convert

ArgumentConversion

AsType

ExplicitCast

FilterReturn

GuardWithTestHnadle

Insert

Fold

FoldNonvoid

FoldVoid

InvokeExact

InvokeGeneric

PassThrough

ArgumentMover BruteArgumentMover

Catch

Permute

Spread

VarargsCollector

MethodHandle chains

8

"Broad chain closeup" by Toni Lozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
Licensed under CC BY 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp
g

MethodHandle chains

GuardWithTest

Direct

Target Direct

Direct

9

"Broad chain closeup" by Toni Lozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
Licensed under CC BY 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp
g

MethodHandle chains

GuardWithTest

Direct

Target Direct

Direct

Insert Direct

10

"Broad chain closeup" by Toni Lozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
Licensed under CC BY 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp
g

MethodHandle chains

GuardWithTest

DynamicInvoker ConstantInt

Target GuardWithTest

Direct

Target Direct

Direct

Insert Direct

11

"Broad chain closeup" by Toni Lozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
Licensed under CC BY 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp
g

MethodHandle chains

12

"Broad chain closeup" by Toni Lozano - http://www.flickr.com/photos/quiero-un-pantano/176909201.
Licensed under CC BY 2.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:Broad_chain_closeup.jpg#mediaviewer/File:Broad_chain_closeup.jp
g

DynamicInvoker GuardWithTest

DynamicInvoker ConstantInt

Target GuardWithTest

Direct

Target Direct

Direct

Insert Direct

(Mostly) tail recursive MH interpreter

13

1
2
3
4
A

A

B

C

D E F

1
2
3
4
C

1
2
3
D

2
3
1
E

ThunkTuples

� Every MethodHandle has a ThunkTuple.

� ThunkTuples hold onto the compiled code for the MethodHandle
– i2jInvokeExactThunk: interpreter to JIT entrypoint
– invokeExactThunk: JIT to JIT entrypoint

� Each ThunkTuple is generated from a bytecode template for the MethodHandle subclass

14

Compiled CodeMethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
i2jInvokeExactThunk
invokeExactThunk

ThunkArchetypes: MethodHandle templates

15

� Signatures are written in terms of ‘int’ and edited at compile time

� Compile time macros are used to further specialize the code.
– ‘numGuardArgs()’ determines how many arguments are passed to the guard handle
– ILGenMacros.* are used to do signature editing, argument pushing and popping, etc

� This the MH equivalent of compiling a single ‘invokevirtual’ instruction
– Specialized just enough to get out of the interpreter and into compiled code

But that’s a lot of duplicate code!

16

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

Compiled Code

Compiled Code

Compiled Code

Avoiding duplicate compiles of equivalent MHs

17

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

Compiled Code

ThunkTables allow sharing

� Every MethodHandle subclass has a ThunkTable

� ThunkTables manage the mapping from MethodHandle to ThunkTuple

� Goal: Good compiled code with a high degree of sharing.
– Stay out of the interpreter.
– Don’t waste code cache

18

Compilation states

19

Interpreted

Compilation states

20

Interpreted

SharedThunk

Compilation states

21

Interpreted

SharedThunk

CustomThunk Inlined

Compiled Code

Initial JIT compilation

22

Interpreted

SharedThunk

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

SharedThunk delays

� With a compile threshold of 25

� The SharedThunk is run interpreted 72 times

23

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

24

24

24

72

SharedThunk delays

24

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

25

24

24

73

Compiled Code

Request
Compile

SharedThunk delays resolved

25

MethodHandle

invocationCount
thunks

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

9

8

8

25

Compiled Code

Request
Compile

Addressing the cost of J->I transitions

� On transition, request MethodHandle compile

� Continue in the jitted code rather than completing the transition

26

ThunkTuple

invocationCount
invokeExactThunk

MethodHandle

invocationCount
thunks

Compiled Code

invokehandle

Compilation states

27

Interpreted

SharedThunk

CustomThunk Inlined

28 http://mccom.com/blog/wp-content/uploads/2014/07/Customize-Key-on

Why CustomThunks?

29

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

Compiled Code Compiled Code Compiled Code

Why CustomThunks?

30

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

MethodHandle

invocationCount
thunks

Compiled Code

Invocation counts are not enough

31

A

B

C

D E F

A

Invocation counts are not enough

32

A

B

C

D E F

A C

Invocation counts are not enough

33

A

B

C

D E F

A C D

Invocation counts are not enough

34

A

B

C

D E F

A C D E

Invocation counts are not enough

35

A

B

C

D E F

A C D E F

Wasted compiles

Invocation counts are not enough

36

A

B

C

D E F

A C D E F Delayed compiles

37

"Brisbane Lightening" by Steve Arnold - http://www.flickr.com/photos/stevoarnold/3161660942.
Licensed under Attribution 2.0 Generic CC BY 2.0

Avoiding compile storms

38

A

B

C

D E F

Avoiding compile storms

39

A

B

C

D E F

A

Avoid MethodHandles.invoke()

40

A

B

C

D E F

AsType

AsType

AsType

� MethodHandle

� Counting occurs on the wrong MethodHandle

Avoid MethodHandles.invoke()

41

A

B

C

D E F

AsType

AsType

AsType

� Counting occurs on the AsType handle, not the head of the chain

� AsType from multiple signatures defeats one-element cache solution

42

Static optimizations

http://www.mathpirate.net/log/wp-content/uploads/2009/09/Static.jpg

Super bytecodes!

43

Static optimizations

44

Drop Constant

Insert Permute AsTypeDrop ArgumentMoverHandle

Constant

Permute Permute F Permute F

Future directions

� AOT SharedThunks

� Additional “super handles” like drop+constant

� AsType optimizations

� Faster / smaller MethodHandle compiles

� UNB PhD candidate looking at data mining MH chains from existing applications

45

Winner will be found at IBM’s booth
4th of February at 15.00

Sign up here: ibm.biz/bluemix-jfokus

Meet IBM at Jfokus!

IBM Global Entrepreneur offer Startups resources including free software
and technical experts, exposure to 600+ expert mentors, plus access to a
global network of clients.

Also eligible startups can apply for getting between 1 K USD to 10 K USD a
month credits for 12 months on their Softlayer and/or Bluemix account

IBM Global Entrepreneur Program
Sign up here: ibm.com/isv/startup

IBM Global Entrepreneur Program

for Cloud Startups – apply for
credits
Sign up here: ibm.biz/CloudStartup

IBM Analytics Starter Program
Sign-up here:
ibm.biz/analyticsstarter

http://www.ibm.com/isv/startup
ibm.biz/CloudStartup
ibm.biz/analyticsstarter

