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Important disclaimers

� THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

� WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION 
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED.

� ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED 
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR 
INFRASTRUCTURE DIFFERENCES.

� ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

� IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT 
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

� IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE 
USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

� NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

– CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR 
THEIR SUPPLIERS AND/OR LICENSORS
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Who am I?

� I've been involved with virtual machine development at IBM since 
2007 and am now the J9 Virtual Machine Team Lead.  J9 is IBM's 
independent implementation of the JVM.  

� I've represented IBM on both the JSR 292 ('invokedynamic') and 
JSR 335 ('lambda') expert groups and lead J9's implementation of 
both JSRs.

� I also maintain the bytecode verifier and deal with various other 
parts of the runtime.
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MethodHandle?  What’s that?
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J9’s MethodHandle hierarchy

� Original prototype had 1 class: MethodHandle
– “kind” field to determine which operation
– “type” field to hold the MethodType
– “vmSlot” field to hold the address, offset, vtable or itable index

� Grab bag of data necessary to support field access and method sends

� 2 major problems with this approach
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J9’s MethodHandle hierarchy

� Hierarchy that separates each MH kind into its own class

� Each MH subclass describes the data needed by the MH 

� JITs look at the class rather than the ‘kind’ instance field
– Provides a place to put specialized behaviour
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MethodHandle chains
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MethodHandle chains
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MethodHandle chains
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MethodHandle chains
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(Mostly) tail recursive MH interpreter
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ThunkTuples

� Every MethodHandle has a ThunkTuple.

� ThunkTuples hold onto the compiled code for the MethodHandle
– i2jInvokeExactThunk: interpreter to JIT entrypoint
– invokeExactThunk: JIT to JIT entrypoint

� Each ThunkTuple is generated from a bytecode template for the MethodHandle subclass
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ThunkArchetypes: MethodHandle templates
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� Signatures are written in terms of ‘int’ and edited at compile time

� Compile time macros are used to further specialize the code.
– ‘numGuardArgs()’ determines how many arguments are passed to the guard handle
– ILGenMacros.* are used to do signature editing, argument pushing and popping, etc

� This the MH equivalent of compiling a single ‘invokevirtual’ instruction
– Specialized just enough to get out of the interpreter and into compiled code



But that’s a lot of duplicate code!
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Avoiding duplicate compiles of equivalent MHs
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ThunkTables allow sharing

� Every MethodHandle subclass has a ThunkTable

� ThunkTables manage the mapping from MethodHandle to ThunkTuple

� Goal: Good compiled code with a high degree of sharing.
– Stay out of the interpreter.
– Don’t waste code cache
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Compilation states
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Compilation states
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Compilation states
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Compiled Code

Initial JIT compilation
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SharedThunk delays

� With a compile threshold of 25

� The SharedThunk is run interpreted 72 times
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SharedThunk delays
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SharedThunk delays resolved
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Addressing the cost of J->I transitions

� On transition, request MethodHandle compile

� Continue in the jitted code rather than completing the transition
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Compilation states
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Why CustomThunks?
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Why CustomThunks?
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Invocation counts are not enough
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Invocation counts are not enough
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Invocation counts are not enough
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Invocation counts are not enough
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Wasted compiles

Invocation counts are not enough
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Avoiding compile storms
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Avoiding compile storms
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Avoid MethodHandles.invoke()
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Avoid MethodHandles.invoke()
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� Counting occurs on the AsType handle, not the head of the chain

� AsType from multiple signatures defeats one-element cache solution
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Static optimizations
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Super bytecodes!
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Static optimizations
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Future directions

� AOT SharedThunks

� Additional “super handles” like drop+constant

� AsType optimizations

� Faster / smaller MethodHandle compiles

� UNB PhD candidate looking at data mining MH chains from existing applications 
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Winner will be found at IBM’s booth
4th of February at 15.00

Sign up here: ibm.biz/bluemix-jfokus

Meet IBM at Jfokus!





IBM Global Entrepreneur offer Startups resources including free software 
and technical experts, exposure to 600+ expert mentors, plus access to a 
global network of clients. 

Also eligible startups can apply for getting between 1 K USD to 10 K USD a 
month credits for 12 months on their Softlayer and/or Bluemix account

IBM Global Entrepreneur Program
Sign up here: ibm.com/isv/startup

IBM Global Entrepreneur Program 

for Cloud Startups – apply for 
credits
Sign up here: ibm.biz/CloudStartup

IBM Analytics Starter Program
Sign-up here: 
ibm.biz/analyticsstarter

http://www.ibm.com/isv/startup
ibm.biz/CloudStartup
ibm.biz/analyticsstarter

