
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 161

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 162

Nashorn: Implementing a
Dynamic Language Runtime
on JVM
§Attila Szegedi 
Principal Member of Technical Staff

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.3

The following is intended to outline our
general product direction. It is intended for
information purposes only, and may not be
incorporated into any contract. It is not a

commitment to deliver any material, code, or
functionality, and should not be relied upon in

making purchasing decisions. The
development, release, and timing of any

features or functionality described for Oracle’s
products remains at the sole discretion of

Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.4

What is Nashorn?

§Nashorn is an ECMAScript 5.1 runtime on top of JVM.
§Open source: all development happens in OpenJDK.
§Ships as standard part of Oracle’s Java SE starting with version 8.
§Accessible through standard javax.script.* API, or directly through
jdk.nashorn.api.scripting package.

§Command line: $JAVA_HOME/bin/jjs
§Has no interpreter currently; compiles to Java bytecode on-the-fly.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.5

Why Nashorn?

§Full ECMAScript 5.1 compliance.
§Modern codebase.
§Security minded.
§Proving ground for invokedynamic.
§Laying groundwork for general dynamic languages platform support.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.6

Release Schedule So Far

§Java 8: first release
§Java 8u20: security fixes and smaller improvements
§Java 8u40: performance release + some ES6 features
§Java 9: …

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.7

8u40: Performance Focus

§It’s easy to write a slow language runtime.
§You can spend a lifetime writing optimizations in your runtime.
§We want to go far, and then generalize the benefits.
§Hence, this talk will mostly be about runtime performance.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.8

What can Nashorn do today?

§Parameter type specialized compilation
§Gradual deoptimization with on-stack code replacement
§a.k.a. “optimistic typing”

§Static code analysis
§Compiler optimizations
§Take advantage of runtime context during compilation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.9

Parameter type specialized compilation

function square(x) {
 return x*x;
}
print(square(500));
print(square(500.1));

 public static square(Object;I)I
 0 iload 1
 1 iload 1
 2 invokedynamic imul(II)I
 7 ireturn

 public static square(Object;D)D
 0 dload 1
 1 dload 1
 2 dmul
 3 dreturn

§Here’s code versions for f generated when invoked with int and double:

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.10

Parameter type specialized compilation

function square(x) {
 return x*x;
}

var a = {
 valueOf: function() {
 return 500;
 }
};

print(square(a));

 public static square(Object;Object;)D
 0 aload 1
 1 invokestatic JSType.toNumber(Object;)D
 4 aload 1
 5 invokestatic JSType.toNumber(Object;)D
 8 dmul
 9 dreturn

§Here’s code version for f generated when invoked with object:

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.11

Parameter type specialized compilation

function square(x) {
 return x*x;
}
var i = 500;
var a = {
 valueOf: function() {
 return i++;
 }
}

print(square(a))

 public static square(Object;Object;)D
 0 aload 1
 1 invokestatic JSType.toNumber(Object;)D
 4 aload 1
 5 invokestatic JSType.toNumber(Object;)D
 8 dmul
 9 dreturn

§toNumber is invoked twice: object-to-number can have side effects!

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.12

Parameter type specialized compilation
§works with higher order functions, too, as the JS function object is a
holder for all its type specializations, and parameter types propagate.
function square(x) {
 return x*x;
}

function apply(f, x) {
 return f(x);
}

print(apply(square, 500));
print(apply(square, 500.1));

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.13

Deoptimizing compilation: arithmetic overflow

function square(x) {
 return x*x;
}
print(square(1 << 17));

 public static square(Object;I)I
 0 iload 1
 1 iload 1
 2 invokedynamic imul(II)I
 7 ireturn

§can’t just use IMUL.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.14

Deoptimizing compilation: arithmetic overflow
 public static square(Object;I)I
 try L0 L1 L2 UnwarrantedOptimismException

 0 iload 1
 1 iload 1
L0
 2 invokedynamic imul(II)I [static ‘mathBootstrap']
L1
 7 ireturn
L2
 8 iconst_2
 9 anewarray Object
 12 aload 0
 13 iload 1
 14 invokedynamic populateArray([Object;Object;I)[Object;[‘populateArrayBootstrp']
 23 invokestatic RewriteException.create(UnwarrantedOptimismException;
 [Object;)RewriteException;
 26 athrow

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.15

Deoptimizing compilation: arithmetic overflow
 public static int mulExact(final int x, final int y, final int programPoint)
 throws UnwarrantedOptimismException
 {
 try {
 return Math.multiplyExact(x, y);
 } catch (final ArithmeticException e) {
 throw new UnwarrantedOptimismException((long)x * (long)y, programPoint);
 }
 }

§Math.multiplyExact() is intrinsified by HotSpot
§We must perform the operation and return the result in the exception

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.16

Deoptimizing compilation: property type

function f(a) {
 return a.foo * 2;
}
f({foo: 5.5})

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.17

Deoptimizing compilation: property type

 public static f(Object;Object;)I
 try L0 L1 L2 UnwarrantedOptimismException
 try L3 L4 L2 UnwarrantedOptimismException

 0 aload 1
L0
 1 invokedynamic dyn:getProp|getElem|getMethod:foo(Object;)I [static “bootstrap” pp=2]
L1
 6 iconst_2
L3
 7 invokedynamic imul(II)I [static “mathBootstrap” pp=3]
L4
 12 ireturn
L2
 13 iconst_2
 14 anewarray Object
 17 aload 0
 18 aload 1
 19 invokedynamic populateArray([Object;Object;Object;)[Object;
 ...

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.18

Deoptimizing compilation: property type

 public static f(Object;Object;)D
 0 aload 1
 1 invokedynamic dyn:getProp|getElem|getMethod:foo(Object;)D [static 'bootstrap']
 6 ldc 2.0
 9 dmul
 10 dreturn

§Since first argument is now double, second is also widened to double.
§Static analysis FTW!

§Multiplication can no longer overflow, so implicitly it also becomes non-
optimistic in a single deoptimizing recompilation pass.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.19

Okay, But How Do We Deoptimize Running Code?
§To deoptimize running code, we must be able to:
§recompile it on the fly, and
§replace running code on top of the stack.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.20

Okay, But How Do We Deoptimize Running Code?
§To deoptimize running code, we must be able to:
§recompile it on the fly, and
§replace running code on top of the stack.

§We achieve this with a pure bytecode solution (runs on any JVM) that
§throws an exception where type assumptions are too narrow,
§ links call site in caller with exception handler that derails into compiler,
§recompiles a new version of the code with wider type,
§compiles a separate one-shot continuation version of the code too,
§ jumps into the continuation variant to resume execution.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.21

Deoptimizing Compilation: rest-of method
 public static f(RewriteException;)D
 0 goto L0
 3 nop
 ...
 8 athrow
L2
 9 ldc 2.0
 12 dmul
 13 dreturn
L0
 14 aload 0
 15 astore 2
 16 aload 0
 17 invokevirtual RewriteException.getByteCodeSlots()[Object;
 20 dup
 21 iconst_0
 22 aaload
 23 astore 0
 25 iconst_1
 26 aaload
 27 astore 1
 32 invokevirtual RewriteException.getReturnValueDestructive()Object;
 35 invokestatic JSType.toNumber(Object;)D
 38 goto L2

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.22

Deoptimizing Compilation: rest-of method

try {
 return invoke_function(params);
} catch (RewriteException e) {
 return do_the_thing(fndata, e));
}

§In extremely simplified terms, if a function can be deoptimized, we link a
MethodHandles.catchException() combinator into every call site that
roughly does this:

§… where “do_the_thing” means recompile the function, store the new
version as the current one for later invocations, invalidate already linked
call sites (incl. this one), generate the continuation version, and jump
into it.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.23

Tricky stuff

try {
 return invoke_function(params);
} catch (RewriteException e) {
 return fold(invoke, do_the_thing_return_continuation(fndata, e)));
}

§Deoptimizing recompilation in presence of recursive (incl. mutually
recursive) invocations: function is on stack below top, too!

§Not exhausting the stack on cascading recompiles. For that we actually
use:

§BTW, as a super-heavy user of invokedynamic, we push for
optimizations in it with the relevant JVM teams.
§“Hey, we need catchCombinator to be super fast in the fast path.
Yeah, no matter how many or what type parameters function has.”

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.24

Tricky stuff
§Of course, getting every piece of
this logic right can mess with your
sanity.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.25

Tricky stuff
§Of course, getting every piece of
this logic right can mess with your
sanity.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.26

Nashorn’s (Extremely Simple) Type Hierarchy

long double Object
(pessimistic)

int

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.27

Deoptimization is stepping in a lattice of type tuples

o,o,o,oi,i,i,i

i,j,i,i

j,i,i,i

i,i,j,i

i,i,i,j

j,j,i,i

i,d,i,i j,d,i,i

…

…

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.28

Sometimes we don’t want to be optimistic

§Static analysis can help us avoid optimism when it’s not needed.
§E.g. overflow semantics is sufficient because an operator would coerce
anyway: (i*i)|0 (logical or coerces to 32-bit int in JS)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.29

It’s compile time! No, it’s run time! No, it’s both!

§We’re in a unique position with a dynamic language as compile and run
times are not separated.

§We use it to leap ahead in walking the type lattice instead of stepping
by one on each recompilation.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.30

It’s compile time! No, it’s run time! No, it’s both!
function f(o) {
 var x = o.x;
 var y = o.y;
 return x * y;
}

print(f({x: 1.1, y: 2.1}));

i,i,i

d,i,d

i,d,d
d,d,d

§When we deoptimize because o.x is double, we also peek at o.y type.
§The runtime values are available to the compiler!
§We only evaluate side-effect free expressions.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.31

It’s compile time! No, it’s run time! No, it’s both!

aa.prototype.SolveVelocityConstraints = function() {
 var d, h = 0,
 l = this.m_bodyA,
 j = this.m_bodyB,
 o = l.m_linearVelocity,
 q = l.m_angularVelocity,
 n = j.m_linearVelocity,
 a = j.m_angularVelocity,
 c = l.m_invMass,
 g = j.m_invMass,
 b = l.m_invI,
 e = j.m_invI;

§Savings can be significant; here’s an Octane box2d snippet:

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.32

Hey, There’s Static type Inference in Your Dynamic
Language Runtime
§Static analysis in a dynamic language is great when you’re targeting a
statically typed runtime.

§Nashorn calculates types of expressions and local variables. Local
variable types are propagated from def to use sites.
§Handles tricky control flow situations. Examples:

§Control transfer into catch blocks
§break from a finally

§Operates on AST
§Recognizes patterns (e.g. value of expression is used as an object/fn)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.33

Try blocks - multiple type liveness
(function f() {
 var a = 1; // def as int
 try { // (def as double implicitly, int remains live)
 print(a); // use as int
 a = 3; // def as int (and double implicitly)
 print(a); // use as int
 a = 2.1; // def as double (int no longer live)
 print(a); // use as double
 } catch(e) {
 print(a); // use as double
 }
 print(a); // use as double
})();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.34

Variables with multiple types

function f(x) {
 var i;
 var y;
 if(x) {
 i = 1;
 y = i * 2; // i int here
 }
 return i; // i object here
}
print(f(5))

§Even then, we preserve it as int
within the branch range and add an
implicit boxing before the join point.

§This preservation of narrower types
in ranges is true for all types.

§Variables can be stored in slots of
different types at different times.

§Here, we emit a synthetic “else”
block that initializes i to
Undefined.INSTANCE.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.35

Dead code elimination

§Due to type specialization functions are compiled only on first invocation.
§Dead stores are eliminated, as well as some side-effect free parts of their
right sides.
§Since we don’t have full liveness analysis on AST, we resorted to
weaker “type liveness” analysis for variables to avoid unnecessary
conversions at control flow joins. Almost as a side effect, partial dead
store elimination came out of it.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.36

Type Liveness Analysis is not a Luxury

 var y = 0;
 for(var i = 0; i < 10; ++i) {
 var x = i * 2;
 y += x;
 }
 print(y);

§30% inherent type
proliferation in a dynamic
language

§70% JavaScript’s
braindead local variable
scoping rules.

70%

30% Inherent

Braindead

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.37

Type Liveness Analysis is not a Luxury

 var y = 0;
 for(var i = 0; i < 10; ++i) {
 var x = i * 2;
 y += x;
 }
 print(y);
 print(x);

§30% inherent type
proliferation in a dynamic
language

§70% JavaScript’s
braindead local variable
scoping rules.

70%

30% Inherent

Braindead

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.38

Things I Don’t Have Time To Talk About

§Object representation
§Array representation (short story: we strive to maintain compact arrays
of homogenous primitive types whenever we can so we can use native
array element getters/setters)

§Efficient linking of builtins (Array.push, Array.pop, String.charAt, etc.)
§Switchpoint-guarded direct constant linking to implementation.

§Efficient linking of “fn.apply(this, arguments)” and similar recurring
patterns.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.39

The Bright Future We Want To Create

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.40

Nashorn compiler pipeline

Source
code Parser AST Atf1 Atfn… AST CodeGen Bytecode

§After parser, there are lots of AST transformation steps (constant
folding, lowering, splitting, symbol assignment, static type calculation)

§Code generator translate AST to JVM bytecode. It’s heavy machinery.
§Emits code for optimistic operations, continuation handling, loads vs.
stores, self-assignment stores (++, += operations), split functions
control flow handover, …

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.41

Separate AST linearization

Atfn… AST DynCodeGen Bytecode

§Code generator heavy lifting doesn’t need to produce JVM bytecode.
§It could produce “dynamically typed” bytecode.
§Separate optimization steps could work on this bytecode.
§Some optimizations work better on a basic-block representation.

§Finally, a light straightforward new codegen could emit JVM bytecode
from dynamic bytecode.

Dynamic
bytecode Dtfn … CodeGen

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.42

Benefits of new intermediate representation

§Some calculations are impossible or near impossible on AST, but easy
and well understood on basic blocks.
§E.g. liveness analysis needs backwards control flow traversal.

§AST is language dependent, bytecode isn’t. Or less so.
§The proposed dynamic bytecode is still very close to JVM bytecode, so
can be targeted by many languages.
§This is the reusability/toolchain idea.

§Similar in idea to LLVM’s IR.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.43

Why?

Source
code

Interpreter
Compiler
Runtime

JVM

Assumption: you talk to JVM in bytecode

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.44

Reuse

§V8 has 972k lines of code
§Nashorn has 213k lines of code
§Because underlying Java platform provides lots of services

§Imagine your language runtime tapping some of Nashorn’s 213k LOC.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.45

Arithmetic example:
§Source code:

function f(x, y) {
 return x * y;
}

§Dynamic bytecode:
f(INT x, INT y)
 LOAD x
 LOAD y
 MUL
 RETURN

§JVM bytecode:
public static f(Object;II)I
 iload 1
 iload 2
 invokedynamic imul(II)I ['mathBootstrap']
 ireturn

catch UnwarrantedOptimismException
 iconst_3
 anewarray Object
 aload 0
 iload 1
 iload 2
 invokedynamic populateArray([Object;Object;II)[Object;
 invokestatic RewriteException.create(...)RewriteException;
 athrow

 local :this L3 L2 0 Object;
 local x L3 L2 1 I
 local y L3 L2 2 I

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.46

Benefits of new intermediate representation

§You can emit symbolic identifiers for variables; final codegen will take
care of mapping to JVM local variable slots.

§It’ll infer types for variables and other values (with pluggable language
specific rules for operations).

§It’ll emit optimistic operations when needed, set up exception handlers,
and emit continuation restart methods.

§It’ll infer JVM return types for functions.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.47

Property getter example:
§Source code:

function f(x, y) {
 return x.foo * y;
}

§Dynamic bytecode:
f(OBJECT x, INT y)
 LOAD x
 GETPROP foo
 LOAD y
 MUL
 RETURN

§JVM bytecode:
public static f(Object;II)I
 aload 1
 invokedynamic dyn:getProp|getElem|getMethod:foo(Object;)I
 iload 2
 invokedynamic imul(II)I ['mathBootstrap']
 ireturn

catch UnwarrantedOptimismException
 iconst_3
 anewarray Object
 aload 0
 aload 1
 iload 2
 invokedynamic populateArray([Object;Object;Object;I)[Object;
 invokestatic RewriteException.create(...)RewriteException;
 athrow

 local :this L3 L2 0 Object;
 local x L3 L2 1 Object;
 local y L3 L2 2 I

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.48

Hypothetical lexical scope getter example:
§Source code:

function f(x, y) {
 function g(z) {
 return x.foo * z;
 }
 return g(z);
}

§Dynamic bytecode:
g(INT y)
 LOAD x
 GETPROP foo
 LOAD y
 MUL
 RETURN

§JVM bytecode:
public static f$g(ScriptFunction;Object;I)I
 aload 0
 invokevirtual ScriptFunction.getScope()ScriptObject;
 astore 3
 aload 3
 invokedynamic dyn:getProp|getElem|getMethod:x(Object;)Object;
 invokedynamic dyn:getProp|getElem|getMethod:foo(Object;)I
 iload 2
 invokedynamic imul(II)I
 ireturn

catch UnwarrantedOptimismException
 …

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.49

Lexical scope

§Most dynamic languages have the concept of accessing variables from
outer lexical scope.

§JVM bytecode doesn’t.
§We thought we can bridge that.
§In dynamic bytecode, you could symbolically reference those variables
as if they were locals.

§JVM code generator would emit necessary “load scope, get variable as
property from it” sequence, complete with optimism if needed.

§JVM code has no nesting, though, so this would be too hard.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.50

Dynamic bytecode to JVM bytecode

LOAD x → ILOAD 3 or
 DLOAD 3 etc.

LOAD x → ALOAD 2 // scope
 INVOKEDYNAMIC getprop:x

MUL → IMUL or
 INVOKEDYNAMIC imul

ALOAD x ALOAD 5
GETPROP y → INVOKEDYNAMIC getprop:y

§Types are inferred; statically non-provable types are optimistically
presumed; optimistic operations are emitted as indy invocations

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.51

Other things we can do automatically

§Splitting of large methods into less than 64k JVM bytecode chunks.
§Current Nashorn AST splitter makes conservative size estimates.
§Dynamic bytecode size much better approximates JVM bytecode size.
§Passing local variables used by split chunks needs artificial lexical scope
objects.

§Split functions are also subject to deoptimizing recompilation.
§Trickier as possibly multiple stack frames need to be saved/restored.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.52

Summary

§Some things are hard:
§static analysis, type-specialized on-demand compilation, optimistic
types with on-stack-replacement deoptimizing recompilation, etc.

§We have solved a bunch of those with Nashorn, and would like to offer
them as a reusable library.

§The library needs a suitable code representation as its input.
§AST is too high level, JVM bytecode is too statically typed.
§We think something “almost bytecode”, but with optional types.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.53

Summary

§We want to give people a framework that:
§takes “dynamic bytecode" as its input with given parameter types
§proves JVM types of expressions statically
§where they can’t be proven or could overflow, inserts optimistic
operations

§allows for running various optimizing transforms on it
§emits the final JVM bytecode, with all the smarts presented earlier.
§helps you with method handle combinators for linking call sites to
functions that can get deoptimized.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Information Protection Policy Classification from Slide 1654

