
A JVM’s Journey Into Polyglot Runtimes

Charlie Gracie

February 8, 2016

OMR

Who am I?

Charlie Gracie
charlie_gracie@ca.ibm.com

 @crgracie

2

• Garbage Collection Architect
for IBM J9 JVM

• Current focus on developing
technologies for the OMR
project

3

Java and the JVM

4

It’s a Polyglot World

5

• Effort in one runtime has no leverage in other runtimes

• …looking very costly to support many language runtimes

No Shared Technology

Languages on The JVM

• Leverage the investment in JVM

• Cross platform support

• High performance runtime

• Production quality

• Tooling / monitoring support

• Interoperability with Java

6

Languages on The JVM

• Works great for new languages like Scala and Groovy

• Existing languages have vibrant communities

• Not all languages map nicely to Java semantics

• We decided to experiment with a different approach that

would allow new and existing language communities to

leverage JVM capabilities

7

An open source toolkit for
language runtime

technologies.

OMR

Open Source Toolkit for Building Runtimes

• Eclipse OMR project proposal

• https://goo.gl/ZTBoeu

• Will be open sourced under EPL

• Derived from the source code of IBM’s

production runtimes

9

https://goo.gl/ZTBoeu
https://goo.gl/ZTBoeu

Open Source Toolkit for Building Runtimes

• Implements language-agnostic parts of a

managed runtime

• Bootstraps development of new runtimes

10

Open Source Toolkit for Building Runtimes

• Allows incremental enablement of advanced

functionality

• Easily leverage new hardware features

• GPU

• FPGA

11

Open Source Toolkit for Building Runtimes

• Shipped as part of IBM SDK for Java 8

• Development of IBM SDK for Java 9

consuming OMR daily

• Proof-of-concept integration with Ruby MRI,

CPython, SOM++

12

Execution Environment

Language Runtime Components

Platform Abstraction Layer

Garbage Collector

Diagnostic Services

Source Code Bytecode/AST
Compiler

13

Just-In-Time Compiler

Interpreter Source Bytecode
Compiler

Interpreter

Execution Environment

Language-Agnostic Components

Platform Abstraction Layer

Garbage Collector

Diagnostic Services

Source Code Bytecode/AST
Compiler

14

Just-In-Time Compiler

Interpreter Source Bytecode
Compiler

Interpreter

Gluing it Together

Interpreter

15

Bytecode
/AST

Compiler

Garbage
Collector

GC Glue

Just-In-Time
Compiler

JIT Glue

Diagnostic
Services

D.
Glue

Ruby + OMR Preview

Ruby + OMR Preview

17

• GitHub location for the preview

• https://goo.gl/P3yXuy

• Available as Docker images

https://goo.gl/P3yXuy
https://goo.gl/P3yXuy

Ruby + OMR Preview

18

• Based on Ruby 2.2.3

• Working to merge with the master branch

• Successfully passes “make test”

• Runs rails apps

Ruby + OMR Preview

19

• Integrated OMR components include

• Platform Abstraction Layer

• Garbage Collection

• Just In Time Compilation

• Diagnostic Tooling

Garbage Collection

Our
Strategy:

• Be 100% compatible

21

Our
Strategy:

• Be 100% compatible

• Decrease pause times

22

Our
Strategy:

• Be 100% compatible

• Decrease pause times

• Increase allocation speed

23

Our
Strategy:

• Be 100% compatible

• Decrease pause times

• Increase allocation speed

• Improve object locality

24

100% Compatible

25

• Do not break C extensions

• Pass all tests that ship with MRI

• Test 3rd party applications

Decrease Pause Times

26

• Complete the following in parallel

• Root Marking

• Object tracing

• Object finalization

• Sweep

Increase Allocation Speed

27

• Use TLH mechanism from OMR

• Threads reserve blocks of heap memory

for exclusive allocation

• Threads bump allocate out of these blocks

alloc(rbthread_t thread, int size)

 if (thread->tlhAlloc < thread->tlhTop - size)

 object = thread->tlhAlloc

 thread->tlhAlloc = object + size

 else

 object = OMR_GC_Allocate(thread, size);

Improve Object Locality

28

• Create new OMRBuffer object type

• Allocate OMRBuffers on heap

• Data is regularly adjacent to object in heap

• OMRBuffers are automatically reclaimed

during collection

Decrease Pause Times

29

• OMRBuffers do not require calls to obj_free

• Significant reduction in pause times

Future Work

30

• Improve heap fragmentation

• Add support for concurrent marking

Just In Time Compilation

Our
Strategy:

• Mimic interpreter

for maximum

compatibility.

• Implement

simple opcodes

directly in IL

32

IL

Our
Strategy:

• Build callbacks to

VM for complex

opcodes.

• Automatically

generate

callbacks from

the instruction

definition file.

33

IL

callback

Our
Strategy:

• Fast-path

particular

patterns

• e.g trace

34

IL

callback

IL

IL

callback

Our
Strategy:

• Don’t try to

handle

everything – let

interpreter

handle hard

cases!

35

IL

callback

IL

IL

callback

Current Status

• Supports almost all opcodes

• Compile iseq after they are executed N times

• Dispatch to JIT code if the iseq has been
compiled

Future Work

37

• Speculative optimizations powered by

decompilation and code-patching

• Class Hierarchy Based Optimization

• Guarded inlining

• Type Specialization

• Recompilation

• Interpreter and JIT Profiling

• Asynchronous Compilation

• More optimization!
• OMR’s Ruby JIT uses only 10 / 100+ optimizations.

Diagnostic Tooling

39

<af-start id="17" threadId="00007F2F3137CFD0" totalBytesRequested="8208" timestamp="2015-12-17T02:16:21.412"
intervalms="23.538" />

<cycle-start id="18" type="global" contextid="0" timestamp="2015-12-17T02:16:21.413" intervalms="23.541" />

<gc-start id="19" type="global" contextid="18" timestamp="2015-12-17T02:16:21.413">

 <mem-info id="20" free="201320" total="4194304" percent="4">

 <mem type="tenure" free="201320" total="4194304" percent="4" />

 </mem-info>

</gc-start>

<allocation-stats totalBytes="2009264" >

 <allocated-bytes non-tlh="46328" tlh="1962936" />

 <largest-consumer threadName="OMR_VMThread [" threadId="00007F2F313786E0" bytes="2009264" />

</allocation-stats>

<gc-op id="21" type="mark" timems="3.660" contextid="18" timestamp="2015-12-17T02:16:21.417">

 <trace-info objectcount="27053" scancount="23093" scanbytes="926304" />

</gc-op>

<gc-op id="24" type="sweep" timems="0.232" contextid="18" timestamp="2015-12-17T02:16:21.417" />

<gc-end id="25" type="global" contextid="18" durationms="4.967" usertimems="4.256" systemtimems="0.000" timestamp="2015-12-
17T02:16:21.418" activeThreads="1">

 <mem-info id="26" free="1467848" total="4194304" percent="34">

 <mem type="tenure" free="1467848" total="4194304" percent="34" />

 </mem-info>

</gc-end>

<cycle-end id="27" type="global" contextid="18" timestamp="2015-12-17T02:16:21.418" />

<allocation-satisfied id="28" threadId="00007F2F313786E0" bytesRequested="8208" />

<af-end id="29" timestamp="2015-12-17T02:16:21.418" threadId="00007F2F3137CFD0" success="true" />

Verbose:gc Output

Garbage Collection and Memory Visualizer

40

• Provides a graphical details on GC events

post mortem from verbose:gc logs

• Works with IBM JDK, IBM Node.js and all of

our proof-of-concepts

• https://goo.gl/YwNrmI

https://goo.gl/YwNrmI
https://goo.gl/YwNrmI
https://goo.gl/YwNrmI

Garbage Collection and Memory Visualizer

41

Health Center

42

• Provides a live view of runtime details

• Works with IBM JDK, IBM Node.js and all of

our proof-of-concepts

• http://goo.gl/u3VITI

http://goo.gl/u3VITI
http://goo.gl/u3VITI
http://goo.gl/u3VITI

Health Center – GC Statistics

43

Health Center – Ruby Method Profiling

44

Performance Results

46

112,84

122,57

0

20

40

60

80

100

120

140

Ruby 2.2.2 Ruby 2.2.2 + OMR

Is Ruby Fast Yet?

47

S
p
e
e
d
u
p
 R

e
la

ti
v
e
 t
o
 I
n
te

rp
re

te
r

Micro Benchmarks
3x

2x

1x

27,8

16,6

5,3

0

5

10

15

20

25

30

Ruby 2.2.2 Ruby 2.2.2 + OMR Ruby 2.2.2 + OMR +JIT

pow(2,n)

Parting Thoughts

• Almost no one starts a new project saying:

49

Parting Thoughts

• Almost no one starts a new project saying:

– First, I’ll write the firmware from scratch…

50

Parting Thoughts

• Almost no one starts a new project saying:

– First, I’ll write the firmware from scratch…

– First, I’ll write the file system from scratch…

51

Parting Thoughts

• Almost no one starts a new project saying:

– First, I’ll write the firmware from scratch …

– First, I’ll write the file system from scratch …

– First, I’ll write the display drivers from scratch …

52

Parting Thoughts

• Almost no one starts a new project saying:

– First, I’ll write the firmware from scratch …

– First, I’ll write the file system from scratch …

– First, I’ll write the display drivers from scratch …

• We would like to make these statements just as unlikely:

– First, I’ll write the cross platform port library from scratch …

– First, I’ll write a garbage collector from scratch …

– First, I’ll write the JIT compiler from scratch …

53

Thank you!

John Duimovich
CTO IBM Runtimes
duimovic@ca.ibm.com
@jduimovich

Contact Info

Mark Stoodley
OMR Project Lead
mstoodle@ca.ibm.com
@mstoodle

56

Charlie Gracie
OMR GC Architect
crgracie@ca.ibm.com
@crgracie

Questions?

Trademarks, Copyrights, Disclaimers

58

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without
notice at IBM’s sole discretion. Information regarding potential future products is intended to outline our
general product direction and it should not be relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated into
any contract. The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY,
WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER
DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE
EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR
LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE
USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2015. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Additional Important Disclaimers

• THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL
PURPOSES ONLY.

• WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED.

• ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A
CONTROLLED ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE,
SOFTWARE OR INFRASTRUCTURE DIFFERENCES.

• ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

• IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

• IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING
OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER
DOCUMENTATION.

• NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

• - CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS
OR THEIR SUPPLIERS AND/OR LICENSORS

59

