
© 2015 IBM Corporation

A Java Implementer's Guide to
Better Apache Spark

Performance

Tim Ellison
IBM Runtimes Team, Hursley, UK

tellison

@tpellison

© 2016 IBM Corporation2

Apache Spark is a fast, general
purpose cluster computing platform

© 2016 IBM Corporation3

SQL Streaming Machine
Learning Graph

Core

Data
Frames

Machine Learning
Pipelines

© 2016 IBM Corporation4

Apache Spark APIs

 Spark Core
– Provides APIs for working with raw data collections
– Map / reduce functions to transform and evaluate the data
– Filter, aggregation, grouping, joins, sorting

 Spark SQL
– APIs for working with structured and semi-structured data
– Loads data from a variety of sources (DB2, JSON, Parquet, etc)
– Provides SQL interface to external tools (JDBC/ODBC)

 Spark Streaming
– Discretized streams of data arriving over time
– Fault tolerant and long running tasks
– Integrates with batch processing of data

 Machine Learning (MLlib)
– Efficient, iterative algorithms across distributed datasets
– Focus on parallel algorithms that run well on clusters
– Relatively low-level (e.g. K-means, alternating least squares)

 Graph Computation (GraphX)
– View the same data as graph or collection-based
– Transform and join graphs to manipulate data sets
– PageRank, Label propagation, strongly connected, triangle count, ...

© 2016 IBM Corporation5

Cluster Computing Platform

 Master Node “the driver”
Evaluates user operations

– Creates a physical execution plan to obtain the final result (a “job”)
– Works backwards to determine what individual “tasks” are required to

produce the answer
– Optimizes the required tasks using pipelining for parallelizable tasks,

reusing intermediate results, including persisting temporary states, etc
(“stages of the job”)

– Distributes work out to worker nodes
– Tracks the location of data and tasks
– Deals with errant workers

 Worker Nodes “the executors” in a cluster
Executes tasks

– Receives a copy of the application code
– Receives data, or the location of data partitions
– Performs the required operation
– Writes output to another input, or storage

driver
job job job

executor
task task task executor

task task task

© 2016 IBM Corporation6

Resilient Distributed Dataset

 The Resilient Distributed Dataset (RDD) is the target of program operations

 Conceptually, one large collection of all your data elements – can be huge!

 Can be the original input data, or intermediate results from other operations

 In the Spark implementation, RDDs are:

– Further decomposed into partitions

– Persisted in memory or on disk

– Fault tolerant

– Lazily evaluated

– Have a concept of location optimization

RDD1 derived
from partitions

RDD1
partition1

RDD1
partition 2

RDD1
partition 1

RDD1
partition 3

RDD1
partition n...

f(x)

partitioner +
preferred location

© 2016 IBM Corporation7

Performance of the Apache Spark Runtime Core

 Moving data blocks
– How quickly can a worker get the data needed for this task?
– How quickly can a worker persist the results if required?

 Executing tasks
– How quickly can a worker sort, compute, transform, … the data in this partition?
– Can a fast worker work-steal or run speculative tasks?

“Narrow” RDD dependencies e.g. map()
pipeline-able

“Wide” RDD dependencies e.g. reduce()
shuffles

RDD1
partition1

RDD1
partition 2

RDD1
partition 1

RDD1
partition 3

RDD1
partition n...

RDD1
partition1

RDD2
partition 2

RDD2
partition 1

RDD2
partition 3

RDD2
partition n...

RDD1
partition1

RDD3
partition 2

RDD3
partition 1

RDD3
partition 3

RDD3
partition n...

RDD1
partition1

RDD1
partition 2

RDD1
partition 1

RDD1
partition 3

RDD1
partition n...

RDD1
partition1

RDD2
partition 2

RDD2
partition 1

© 2016 IBM Corporation8

A few things we can do with the JVM to enhance the performance of
Apache Spark!

1) JIT compiler enhancements, and writing JIT-friendly code

2) Improving the object serializer

3) Faster IO – networking and storage

4) Offloading tasks to graphics co-processors (GPUs)

© 2016 IBM Corporation9

JIT compiler enhancements, and writing JIT-friendly code

© 2016 IBM Corporation10

JNI calls are not free!

https://github.com/xerial/snappy­java/blob/develop/src/main/java/org/xerial/snappy/SnappyNative.cpp

© 2016 IBM Corporation11

Style: Using JNI has an impact...

 The cost of calling from Java code to natives and from natives to Java code is significantly
higher (maybe 5x longer) than a normal Java method call.

– The JIT can't in-line native methods.

– The JIT can't do data flow analysis into JNI calls
• e.g. it has to assume that all parameters are always used.

– The JIT has to set up the call stack and parameters for C calling convention,
• i.e. maybe rearranging items on the stack.

 JNI can introduce additional data copying costs
– There's no guarantee that you will get a direct pointer to the array / string with
Get<type>ArrayElements(), even when using the GetPrimitiveArrayCritical
versions.

– The IBM JVM will always return a copy (to allow GC to continue).

 Tip:
– JNI natives are more expensive than plain Java calls.
– e.g. create an unsafe based Snappy-like package written in Java code so that JNI cost is

eliminated.

© 2016 IBM Corporation12

Style: Use JIT optimizations to reduce overhead of logging checks

 Tip: Check for the non-null value of a static field ref to instance of a logging class singleton
– e.g.

– Uses the JIT's speculative optimization to avoid the explicit test for logging being enabled;
instead it ...

1)Generates an internal JIT runtime assumption (e.g. InfoLogger.class is undefined),
2)NOPs the test for trace enablement
3)Uses a class initialization hook for the InfoLogger.class (already necessary for instantiating the class)

4)The JIT will regenerate the test code if the class event is fired

 Spark's logging calls are gated on the checks of a static boolean value

trait Logging

Spark

© 2016 IBM Corporation13

Style: Judicious use of polymorphism
 Spark has a number of highly polymorphic interface call sites and high fan-in (several calling contexts

invoking the same callee method) in map, reduce, filter, flatMap, ...
– e.g. ExternalSorter.insertAll is very hot (drains an iterator using hasNext/next calls)

 Pattern #1:
– InterruptibleIterator → Scala's mapIterator → Scala's filterIterator → …

 Pattern #2:
– InterruptibleIterator → Scala's filterIterator → Scala's mapIterator → …

 The JIT can only choose one pattern to in-line!
– Makes JIT devirtualization and speculation more risky; using profiling information from a different

context could lead to incorrect devirtualization.

– More conservative speculation, or good phase change detection and recovery are needed in the JIT
compiler to avoid getting it wrong.

 Lambdas and functions as arguments, by definition, introduce different code flow targets
– Passing in widely implemented interfaces produce many different bytecode sequences
– When we in-line we have to put runtime checks ahead of in-lined method bodies to make sure we are

going to run the right method!
– Often specialized classes are used only in a very limited number of places, but the majority of the code

does not use these classes and pays a heavy penalty
– e.g. Scala's attempt to specialize Tuple2 Int argument does more harm than good!

 Tip: Use polymorphism sparingly, use the same order / patterns for nested & wrappered code, and
keep call sites homogeneous.

© 2016 IBM Corporation14

Effect of Adjusting JIT heuristics for Apache Spark

IBM JDK8 SR3
 (tuned)

IBM JDK8 SR3
(out of the box)

PageRank 160% 148%

Sleep 101% 113%

Sort 103% 147%

WordCount 130% 146%

Bayes 100% 91%

Terasort 157% 131%

Geometric
mean

121% 116%

1/Geometric mean of HiBench time on zLinux 32 cores, 25G heap

Improvements in successive IBM Java 8 releases Performance compared with OpenJDK 8

HiBench huge, Spark 1.5.2, Linux Power8 12 core * 8-way SMT

1.35x

© 2016 IBM Corporation15

Replacing the object serializer

© 2016 IBM Corporation16

Writing a Spark-friendly object serializer

 Spark has a plug-in architecture for flattening objects to storage
– Typically uses general purpose serializers, e.g. Java serializer, or Kryo, etc.

 Can we optimize for Spark usage?
– Goal: Reduce time time to flatten objects
– Goal: Reduce size of flattened objects

 Expanding the list of specialist serialized form
– Having custom write/read object methods allows for reduced time in reflection and smaller on-

wire payloads.
– Types such as Tuple and Some given special treatment in the serializer

 Sharing object representation within the serialized stream to reduce payload
– But may be defeated if supportsRelocationOfSerializedObjects required

 Reduce the payload size further using variable length encoding of primitive types.
– All objects are eventually decomposed into primitives

© 2016 IBM Corporation17

Writing a Spark-friendly object serializer

 Adaptive stack-based recursive serialization vs. state machine serialization
– Use the stack to track state wherever possible, but fall back to state machine for deeply

nested objects (e.g. big RDDs)

 Special replacement of deserialization calls to avoid stack-walking to find class loader
context

– Optimization in JIT to circumvent some regular calls to more efficient versions

 Tip: These are opaque to the application, no special patterns required.

 Results: Variable, small numbers of percentages at best

© 2016 IBM Corporation18

Faster IO – networking and storage

© 2016 IBM Corporation

Remote Direct Memory Access (RDMA) Networking

Spark VM

Buffer

Off
Heap

Buffer

Spark VM

Buffer

Off
Heap

Buffer

Ether/IB
SwitchRDMA NIC/HCA RDMA NIC/HCA

OS OS
DMA DMA
(Z-Copy) (Z-Copy)

(B-Copy)(B-Copy)

Acronyms:
Z-Copy – Zero Copy

B-Copy – Buffer Copy
IB – InfiniBand

Ether - Ethernet
NIC – Network Interface Card
HCA – Host Control Adapter

● Low-latency, high-throughput networking
● Direct 'application to application' memory pointer exchange between remote hosts
● Off-load network processing to RDMA NIC/HCA – OS/Kernel Bypass (zero-copy)
● Introduces new IO characteristics that can influence the Spark transfer plan

Spark node #1 Spark node #2

© 2016 IBM Corporation20

TCP/IP

RDMA

RDMA exhibits improved throughput and reduced latency.

Available over java.net.Socket APIs or explicit jVerbs calls

© 2016 IBM Corporation

Faster network IO with RDMA-enabled Spark

21

New dynamic transfer plan that adapts to the load and
responsiveness of the remote hosts.

New “RDMA” shuffle IO mode with lower latency and
higher throughput.

JVM-agnostic

IBM JVM only

JVM-agnostic

IBM JVM only

IBM JVM only

Block manipulation (i.e., RDD partitions)

High-level API

JVM-agnostic working prototype
with RDMA

© 2016 IBM Corporation

Shuffling data shows 30% better response time and lower
CPU utilization

© 2016 IBM Corporation23

Faster storage with POWER CAPI/Flash

 POWER8 architecture offers a 40Tb Flash drive attached
via Coherent Accelerator Processor Interface (CAPI)

– Provides simple coherent block IO APIs
– No file system overhead

 Power Service Layer (PSL)
– Performs Address Translations
– Maintains Cache
– Simple, but powerful interface to the Accelerator unit

 Coherent Accelerator Processor Proxy (CAPP)
– Maintains directory of cache lines held by Accelerator
– Snoops PowerBus on behalf of Accelerator



© 2016 IBM Corporation24

Faster disk IO with CAPI/Flash-enabled Spark

 When under memory pressure, Spark spills RDDs to disk.
– Happens in ExternalAppendOnlyMap and ExternalSorter

 We have modified Spark to spill to the high-bandwidth, coherently-attached
Flash device instead.

– Replacement for DiskBlockManager
– New FlashBlockManager handles spill to/from flash

 Making this pluggable requires some further abstraction in Spark:
– Spill code assumes using disks, and depends on DiskBlockManger
– We are spilling without using a file system layer

 Dramatically improves performance of executors under memory pressure.

 Allows to reach similar performance with much less memory (denser
deployments).

IBM Flash System 840Power8 + CAPI

© 2016 IBM Corporation25

e.g. using CAPI Flash for RDD
caching allows for 4X memory
reduction while maintaining equal
performance

© 2016 IBM Corporation26

Offloading tasks to graphics co-processors

© 2016 IBM Corporation27

GPU-enabled array sort method

IBM Power 8 with Nvidia K40m GPU

 Some Arrays.sort() methods will offload work to GPUs today
– e.g. sorting large arrays of ints

© 2016 IBM Corporation28

JIT optimized GPU acceleration

 Comes with caveats

– Recognize a limited set of operations within the lambda expressions,
• notably no object references maintained on GPU

– Default grid dimensions and operating parameters for the GPU
workload

– Redundant/pessimistic data transfer between host and device
• Not using GPU shared memory

– Limited heuristics about when to invoke the GPU and when to
generate CPU instructions

 As the JIT compiles a stream expression we can identify candidates for GPU off-loading
– Arrays copied to and from the device implicitly
– Java operations mapped to GPU kernel operations
– Preserves the standard Java syntax and semantics bytecodes

intermediate
representation

optimizer

CPU GPU

code generator
code

generator

PTX ISACPU native

© 2016 IBM Corporation29

GPU optimization of Lambda expressions

Speed-up factor when run on a GPU enabled host

IBM Power 8 with Nvidia K40m GPU

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

auto-SIMD parallel forEach on CPU

parallel forEach on GPU

matrix size

The JIT can recognize parallel stream
code, and automatically compile down to
the GPU.

© 2016 IBM Corporation

Learn Predict

Moving high-level algorithms onto the GPU

Drug1 Drug2

Aspirin Gliclazide

Aspirin Dicoumarol

Drug1 Drug2 Sim

Salsalate Aspirin .9

Dicoumarol Warfarin .76

Known Interactions of type 1 to …

Drug1 Drug2 Best
Sim1*Sim1

Best
SimN*SimN

Salsalate Gliclazide .9*1 .7*1

Salsalate Warfarin .9*.76 .7*.6

Chemical Similarity

Drug1 Drug2 Prediction

Salsalate Gliclazide 0.85

Salsalate Warfarin 0.7

…

Drug1 Drug2 Prediction

Salsalate Gliclazide 0.53

Salsalate Warfarin 0.32

Logistic Regression
Model

Drug1 Drug2 Sim

Salsalate Aspirin .7

Dicoumarol Warfarin .6

Interactions

Ingest

Drug1 Drug2

Aspirin Probenecid

Aspirin Azilsartan

Interactions Prediction

© 2016 IBM Corporation

• 25X Speed up for Building Model stage (replacing Spark Mllib Logistic Regression)

• Transparent to the Spark application, but requires changes to Spark itself

© 2016 IBM Corporation32

Summary

 We are focused on Core runtime performance to get a multiplier up the Spark stack.
– More efficient code, more efficient memory usage/spilling, more efficient serialization &

networking, etc.

 There are hardware and software technologies we can bring to the party.
– We can tune the stack from hardware to high level structures for running Spark.

 Spark and Scala developers can help themselves by their style of coding.

 All the changes are being made in the Java runtime or
being pushed out to the Spark community.

 There is lots more stuff I don't have time to talk about, like GC optimizations, object layout,
monitoring VM/Spark events, hardware compression, security, etc. etc.

– mailto:

http://ibm.biz/spark­kit

