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Spark

Apache Spark is a fast, general
purpose cluster computing platform
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Apache Spark APIs

| |
Spark C_ore ) ) ) text file.flatMap(lambda line: line.split(})
— Provides APIs for working with raw data collections map(lambda word: (word, 1))

— Map / reduce functions to transform and evaluate the data .reduceByKey(lambda a, b: a+b)
— Filter, aggregation, grouping, joins, sorting

" Spark SQL context.jsonFile("s3n://...")
— APIs for working with structured and semi-structured data -rigiﬁte"TE"‘PTa“E{'('i son”)
. ts = text.
— Loads data from a variety of sources (DB2, JSON, Parquet, etc) refﬁ'..SELE;DT s
— Provides SQL interface to external tools (JDBC/ODBC) FROM people
JOIN json ...""")
» Spark Streaming
— Discretized streams of data arriving over time TwitterUtils.createStream(...)
_ : .filter(_ .getText.contains("Spark")})
Fault tolerant and long running tasks countByWindow(Seconds (5))

— Integrates with batch processing of data

= Machine Leal’ning (MLlIb) points = spark.textFile("hdfs://...")
— Efficient, iterative algorithms across distributed datasets .map(parsePoint)
— Focus on parallel algorithms that run well on clusters

- . model = KMeans.train(points, k=18)
— Relatively low-level (e.g. K-means, alternating least squares)

graph = Graph{vertices, edges)
messages = spark.textFile{"hdfs://...")
graph2 = graph.joinvVertices(messages) {

" Graph Computation (GraphX)

— View the same data as graph or collection-based (id, vertex, msg) => ...

— Transform and join graphs to manipulate data sets ¥

— PageRank, Label propagation, strongly connected, triangle count, ... N
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Worker Node

Executor | Cache

Cluster Computing Platform ,
Driver Program //_; Task Task

SparkContext Cluster Manager

Worker Node

" Master Node “the driver” ~
Evaluates user operations ¥J Executor | Cache
— Creates a physical execution plan to obtain the final result (a “job”) b [ Tack | [ Task

— Works backwards to determine what individual “tasks” are required to

produce the answer
— Optimizes the required tasks using pipelining for parallelizable tasks,
reusing intermediate results, including persisting temporary states, etc

(“stages of the job”)
— Distributes work out to worker nodes

— Tracks the location of data and tasks
— Deals with errant workers

" Worker Nodes “the executors” in a cluster Cjob  job | job
Executes tasks
— Receives a copy of the application code

— Receives data, or the location of data partitions | S O] |
— Performs the required operation
— Writes output to another input, or storage (task || task | task | executor

‘ task H task H task ‘
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Resilient Distributed Dataset

" The Resilient Distributed Dataset (RDD) is the target of program operations
" Conceptually, one large collection of all your data elements — can be huge!

" Can be the original input data, or intermediate results from other operations

" In the Spark implementation, RDDs are: (x)
— Further decomposed into partitions !
: : : RDD1 SEDYRE partitions partitioner +
— Persisted in memory or on disk from preferred location
— Fault tolerant
— Lazily evaluated
RDD1 RDD1 RDD1 RDD1
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Performance of the Apache Spark Runtime Core

" Moving data blocks
— How quickly can a worker get the data needed for this task?
— How quickly can a worker persist the results if required?

— How quickly can a worker sort, compute, transform, ... the data in this partition?
“Wide” RDD dependencies e.g. reduce()

1}

Il

~N ol

" Executing tasks
— Can a fast worker work-steal or run speculative tasks?
“Narrow” RDD dependencies e.g. map()
pipeline-able shuffles
RDD1 RDD1 RDD1 RDD1 RDD1 RDD1 RDD1 RDD1
partition 1 partition 2 partition3 | = *- partition n partition 1 partition 2 partition3 | - --  partition n
\ /|
\J \J Y Y
RDD2 RDD2 RDD2 RDD2
partition 1 partition 2 partition 3 | ==+ | partition n
\\Vd N/
RDD2 RDD2
partition 1 partition 2

RDD3 RDD3 RDD3 RDD3
partition 1 partition 2 partition 3 | ==+ | partition n
B O\ O\ e . \ )\ \ \ )\ O\ AN NN WY elel @
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A few things we can do with the JVM to enhance the performance of
Apache Spark!

1) JIT compiler enhancements, and writing JIT-friendly code

2) Improving the object serializer

3) Faster 10 — networking and storage

4) Offloading tasks to graphics co-processors (GPUSs)
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JIT compiler enhancements, and writing JIT-friendly code
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JNI calls are not free!

JNIEXPORT void JNICALL Java_org_xerial_snappy_SnappyNative_arrayCopy
(JNIEnv * env, jobject self, jobject input, jint offset, jint length, jobject output, jint output_offset)

char* src = (char*) env->GetPrimitiveArrayCritical((jarray) input, @);
char* dest = (char*) env->GetPrimitiveArrayCritical((jarray) output, 0);
if(src == @ || dest == @) {
" out of memory
if(src '=0) {
env->ReleasePrimitiveArrayCritical((jarray) input, src, @);
}
if(dest !'= 0) {
env->ReleasePrimitiveArrayCritical((jarray) output, dest, @);
}
throw_exception(env, self, 4);
return;

memcpy(dest+output_offset, src+offset, (size_t) length);

env->ReleasePrimitiveArrayCritical((jarray) input, src, @);
env->ReleasePrimitiveArrayCritical((jarray) output, dest, @);

https://github.com/xerial/snappy-java/blob/develop/src/main/java/org/xerial/snappy/SnappyNative.cpp
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Style: Using JNI has an impact...

" The cost of calling from Java code to natives and from natives to Java code is significantly
higher (maybe 5x longer) than a normal Java method call.

— The JIT can't in-line native methods.

— The JIT can't do data flow analysis into JNI calls
* e.g. it has to assume that all parameters are always used.

— The JIT has to set up the call stack and parameters for C calling convention,
* i.e. maybe rearranging items on the stack.

" JNI can introduce additional data copying costs
— There's no guarantee that you will get a direct pointer to the array / string with
Get<type>ArrayElements (), even when using the GetPrimitiveArrayCritical
versions.
— The IBM JVM will always return a copy (to allow GC to continue).

" Tip:
— JNI natives are more expensive than plain Java calls.
—e.g. create an unsafe based Snappy-like package written in Java code so that JNI cost is
eliminated.

IE5: —Spofll(\z £
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Style: Use JIT optimizations to reduce overhead of logging checks

» Spark's logging calls are gated on the checks of a static boolean value

/] Log methods that take only a string | frait Logging
protected def logInfo(msg: => String) {
if (log.isInfoEnabled) log.info(msg)

1

Spark

1} else {
logInfo(
s"TID StaskAttemptId waiting for at least 1/2N of shuffle memory pool to be free")
memoryManager.wait()

}

" Tip: Check for the non-null value of a static field ref to instance of a logging class singleton
—e.g. // Log methods that take only a String
protected def logInfo(msg: => String) {
if (infoLogger != null) infoLogger.log|(msg)

}

— Uses the JIT's speculative optimization to avoid the explicit test for logging being enabled;
instead it ...
1)Generates an internal JIT runtime assumption (e.g. InfoLogger.class is undefined),
2)NOPs the test for trace enablement
3)Uses a class initialization hook for the InfoLogger.class (already necessary for instantiating the class)
4)The JIT will regenerate the test code if the class event is fired

IE5: —Spofll{\z £
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Style: Judicious use of polymorphism

* Spark has a number of highly polymorphic interface call sites and high fan-in (several calling contexts
invoking the same callee method) in map, reduce, filter, flatMap, ...
—e.g. ExternalSorter.insertAll is very hot (drains an iterator using hasNext/next calls)

" Pattern #1.:
— InterruptibleIterator — Scala's mapIterator — Scala's filterIterator - ...

" Pattern #2:
— InterruptibleIterator — Scala's filterIterator — Scala's mapIterator - ...

" The JIT can only choose one pattern to in-line!
— Makes JIT devirtualization and speculation more risky; using profiling information from a different
context could lead to incorrect devirtualization.

— More conservative speculation, or good phase change detection and recovery are needed in the JIT
compiler to avoid getting it wrong.

* Lambdas and functions as arguments, by definition, introduce different code flow targets
— Passing in widely implemented interfaces produce many different bytecode sequences
— When we in-line we have to put runtime checks ahead of in-lined method bodies to make sure we are
going to run the right method!
— Often specialized classes are used only in a very limited number of places, but the majority of the code
does not use these classes and pays a heavy penalty
— e.g. Scala's attempt to specialize Tuple2 Int argument does more harm than good!

" Tip: Use polymorphism sparingly, use the same order / patterns for nested & wrappered code, and
keep call sites homogeneous.

IE5: —Spor‘ll(\z £
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Effect of Adjusting JIT heuristics for Apache Spark

Improvements in successive IBM Java 8 releases Performance compared with OpenJDK 8
IBM JDK8 SR3 IBM JDK8 SR3
" 1.35x (tuned) (out of the box)
| I
0
Java8 GA Java8 R1 Java8 R2 Java8 R2FP 10 Java8SR3 proto

1/Geometric mean of HiBench time on zLinux 32 cores, 25G heap
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Replacing the object serializer
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Writing a Spark-friendly object serializer

" Spark has a plug-in architecture for flattening objects to storage
— Typically uses general purpose serializers, e.g. Java serializer, or Kryo, etc.

" Can we optimize for Spark usage?
— Goal: Reduce time time to flatten objects
— Goal: Reduce size of flattened objects

" Expanding the list of specialist serialized form
— Having custom write/read object methods allows for reduced time in reflection and smaller on-
wire payloads.
— Types such as Tuple and Some given special treatment in the serializer

" Sharing object representation within the serialized stream to reduce payload
— But may be defeated if supportsRelocationOfSerializedObjects required

" Reduce the payload size further using variable length encoding of primitive types.
— All objects are eventually decomposed into primitives

16 © 2016 IBM Corporation
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Writing a Spark-friendly object serializer

" Adaptive stack-based recursive serialization vs. state machine serialization
— Use the stack to track state wherever possible, but fall back to state machine for deeply
nested objects (e.g. big RDDs)

" Special replacement of deserialization calls to avoid stack-walking to find class loader
context
— Optimization in JIT to circumvent some regular calls to more efficient versions
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" Tip: These are opaque to the application, no special patterns required.

" Results: Variable, small numbers of percentages at best
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Faster |O — networking and storage
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Remote Direct Memory Access (RDMA) Networking

Spark node #1

Off
Spark VM Heap
ﬁ A
(B-Copy)
DMA
oS
(Z-Copy)
RDMA NIC/HCA

Spark node #2

Acronyms:
Z-Copy — Zero Copy
B-Copy — Buffer Copy
IB — InfiniBand
Ether - Ethernet
NIC — Network Interface Card
HCA — Host Control Adapter

e

off

Heap Spark VM

| Buffer H Buffer |
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

A H

(B-Copy)
DMA

(z-Copy) o

v

RDMA NIC/HCA

* Low-latency, high-throughput networking
Direct 'application to application' memory pointer exchange between remote hosts
Off-load network processing to RDMA NIC/HCA - OS/Kernel Bypass (zero-copy)
Introduces new |O characteristics that can influence the Spark transfer plan
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Throughput vs Mesg Size (> 512 Bytes)

Latency vz fesg Size
NetPIPE Benchmark [IBM Java 70SR6] Zurich Sockets Benchmark CIEN Java 70861
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RDMA exhibits improved throughput and reduced latency.
Available over java.net.Socket APIs or explicit jVerbs calls
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Faster network 10 with RDMA-enabled Spark

New dynamic transfer plan that adapts to the load and
{ Spark J responsiveness of the remote hosts.
A ‘ “sparkshuffle.blockTransferService )
Y Block manipulation (i.e., RDD partitions)
NIO
H h | |API 11 1] -
gnrieve . New “RDMA” shuffle IO mode with lower latency and
Netty . higher throughput.
spark.shuffle.io.mode
7 T ' ____________________________________________________________ N
/ NIO e Java sockets JVM-agnostic \\\
| |
| :
! OlI0  jeeed » Java Sockets over RDMA IBM JVM only |
i i
i native transport | . » native sockets JVM-agnostic :
! P ) (0S, architecture depedent) 9 |
! NI |
4 .
i Rsockets JVM-agnostic working prototype |
| i with RDMA !
| jverb !
| RDMA ) Jna‘:)tzvfa Verbs performance IBM JVM only i
l\ .. J J'NI I’
\\\ * native Verbs IBM JVM Only ,//
21
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Shuffling data shows 30% better response time and lower
CPU utilization

TPC-H 100 GB - Q1/Q2/Q18
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Faster storage with POWER CAPI/Flash

CAPI Developer Kit Card

* POWERS architecture offers a 40Tb Flash drive attached
via Coherent Accelerator Processor Interface (CAPI)

— Provides simple coherent block 10 APIs
— No file system overhead

" Power Service Layer (PSL)
— Performs Address Translations
— Maintains Cache

— Simple, but powerful interface to the Accelerator unit

" Coherent Accelerator Processor Proxy (CAPP)

— Maintains directory of cache lines held by Accelerator
— Snoops PowerBus on behalf of Accelerator

Typical IO Model Flow: | Total ~13us for data prep

DD Call Copy or Pin MMIO Notify Poll / Interrupt Copy or Unpin Ret. From DD J
Source Data Accelerator Completion Result Data Completion
300 Instructions 10,000 Instructions Application 3,000 Instructions ~ 1,000 Instructions
\ / Dependent, but \1’00O Instructlons/
POWERS Processor 7.9us Equal to below 4.9us

Flow with a Coherent Model:| Total 0.36us

Shared Mem. Shared Memory
Notify Accelerato! Completion
Proprietary Hardware to enable CAPI |
P ———— . 400 Instructions  Application 100 Instructions
perating System Enablemeni
Ubuntu LE Kernel Extensions 0.3us DePendent' but
libcxl function calls " u‘ Equal to above OOSHS
23
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Faster disk 10 with CAPI/Flash-enabled Spark

* When under memory pressure, Spark spills RDDs to disk.
— Happens in ExternalAppendOnlyMap and ExternalSorter

" We have modified Spark to spill to the high-bandwidth, coherently-attached
Flash device instead.
— Replacement for DiskBlockManager
— New FlashBlockManager handles spill to/from flash

" Making this pluggable requires some further abstraction in Spark:
— Spill code assumes using disks, and depends on DiskBlockManger
— We are spilling without using a file system layer

" Dramatically improves performance of executors under memory pressure.

" Allows to reach similar performance with much less memory (denser
deployments).

o

Power8 + CAPI IBM Flash System 840

por‘llg A
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X Degrees of Separation on Spark

400000
e.g. using CAPI Flash for RDD
caching allows for 4X memory
reduction while maintaining equal
performance
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Offloading tasks to graphics co-processors
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GPU-enabled array sort method

" Some Arrays.sort () methods will offload work to GPUs today
— e.g. sorting large arrays of ints

400,000,000

T
c
=]
2 == |ava
vl
_“.5- —¥— Java+GPU
]
£ 40,000,000
=] |
vl
W |
=
z [
= L
[
o

4,000,000

30,000 300,000 3,000,000 30,000,000 300,000,000
Array Length
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JIT optimized GPU acceleration

" As the JIT compiles a stream expression we can identify candidates for GPU off-loading
— Arrays copied to and from the device implicitly
— Java operations mapped to GPU kernel operations
— Preserves the standard Java syntax and semantics

intermediate

. representation
= Comes with caveats b

— Recognize a limited set of operations within the lambda expressions,
* notably no object references maintained on GPU optimizer

— Default grid dimensions and operating parameters for the GPU
workload

— Redundant/pessimistic data transfer between host and device

code
* Not using GPU shared memory code generator

generator

— Limited heuristics about when to invoke the GPU and when to
generate CPU instructions

CPU native PTX ISA
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GPU optimization of Lambda expressions

The JIT can recognize parallel stream Speed-up factor when run on a GPU enabled host
code, and automatically compile down to 1000.00
the GPU. '
public void multiply() { 10000
IntStream.range(0, COLS*#COLS).parallel().forEach(
id > 1 10.00
int i = id / COLS: 1.00
int j = id 7 COLS:
double sum = 0: 0.10
for {int k = 0: k € COLS: k++) { 0.01
sum += input1[i*COLS + k1 # input2[k#COLS + jl:
} 0.00
outputlid] = sum:
}:
¥
matrix size
B auto-SIMD W parallel forEach on CPU

M parallel forEach on GPU

IE5: —ﬁpofl’(\z £

29 © 2016 IBM Corporation



LU\ i AN\ Jokus |

Moving high-level algorithms onto the GPU

e
N 4>
" Chemical Similarity
“I'Il’l'ﬂ}':} Interactions Prediction
HW@ AMK Dicoumarol Warfarin 76 LOgiStiC Regression .
Open Data Drug & Drug Target Database : Model Salsalate Gliclazide 0.85
Salsalate Warfarin 0.7
Dicoumarol Warfarin 6 Salsalate  Gliclazide  0.53
Salsalate Warfarin 0.32
Interactions

Drugl Drug2

Aspirin Gliclazide
Drugl Drug2 Bgst . Bgst .
Aspirin  Dicoumarol e
Drugl Drug2 Salsalate  Gliclazide .9*1 7*1
Aspirin  Probenecid Salsalate ~ Warfarin .9*.76 .7*.6

Aspirin  Azilsartan

—Spm"ll{\z £

© 2016 IBM Corporation




40.17  701.79 84.19 37.00

Spark Job Meter

Learn Building

37.76 | 2812 | 8780 38.23

* 25X Speed up for Building Model stage (replacing Spark Mllib Logistic Regression)

* Transparent to the Spark application, but requires changes to Spark itself

o por‘lgz )
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Summary

" We are focused on Core runtime performance to get a multiplier up the Spark stack.

— More efficient code, more efficient memory usage/spilling, more efficient serialization &
networking, etc.

" There are hardware and software technologies we can bring to the party.
— We can tune the stack from hardware to high level structures for running Spark.

" Spark and Scala developers can help themselves by their style of coding. <AZ

= All the changes are being made in the Java runtime or SpQrK

being pushed out to the Spark community. Lightning-Fast Cluster Computing

" There is lots more stuff | don't have time to talk about, like GC optimizations, object layout,
monitoring VM/Spark events, hardware compression, security, etc. etc.
—mailto: tellison@apache.org

developerWorks > Technical topics > Java technology | Big data and analytics > /

IBM Packages for Apache \
Spark

‘-..______‘_

s S | 7|
Exploit the big data analytics capabilities of Apache Spark with
this new package for IBM platforms.

B
=

http://ibm.biz7sparkK-kit
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