
© Copyright Azul Systems 2016

© Copyright Azul Systems 2015

@speakjava azul.com

Bringing The Performance of
Structs To Java

(Sort Of)

Simon Ritter
Deputy CTO, Azul Systems

1

© Copyright Azul Systems 2016

ObjectLayout Project Focus
§  Match the speed benefits that C-based languages get from

commonly used forms of memory layout
– Expose these benefits to normal, idiomatic POJO usage

§  Speed. For regular Java objects. On the heap

§  What this is not looking at:
– Improved footprint
– Off-heap solutions
– Immutability

2

© Copyright Azul Systems 2016

Goal Overlap For ObjectLayout
§  Relationship to value types: None
§  Relationship to packed objects (JNR/FFI): None
§  ObjectLayout is focused on a different problem
§  Minimal overlap does exist

– In the same way that ArrayList and HashMap overlap as
containers for groups of objects

3

© Copyright Azul Systems 2016

Value Types ObjectLayout

Packed objects
&

JNA/FFI
Array of

small-footprint
values

Immutable

On stack

On heap

Return values Speed!

Regular Java objects

On the heap

NEW CODE

NEW CODE

Off the heap

Sharing data

Precise layout control

Objects USABLE
BY ALL EXISTING

CODE

4

© Copyright Azul Systems 2016

ObjectLayout Origin
§  ObjectLayout started with a simple argument:

– “We need structs in Java…”
§ People (mis-?)use sun.misc.Unsafe to try and replicate structs
§ C and C++ get this for free

– “We already have structs. They are called Objects.”
§ We need competitive access speed to structs in C/C++

– It’s all about capturing “enabling semantic limitations”

5

© Copyright Azul Systems 2016

Where speed comes from
§  C layout speed benefits are dominated by two factors:

– Dead reckoning
– Streaming for arrays of structs

6

© Copyright Azul Systems 2016

Data Grouping In C
struct	square	{	
		int	x;	
		int	y;	
		int	size;	
};	
	
...	
	
struct	square	s;	

int x

int y

int size

square	

7

© Copyright Azul Systems 2016

Dead Reckoning In C

0 1 2 3 4

struct	*sq	=	malloc(sizeof(Struct	square)*5);	

											sq &sq[3].y	= 														+	(3*sizeof(Struct	square)) 																																										+	sizeof(int);

8

© Copyright Azul Systems 2016

Streaming Arrays In C

square square square square square

square
stride

sq sq + (3 * sizeof(Struct square)) sq + (4 * sizeof(Struct square)) sq + sizeof(Struct square) sq + (2 * sizeof(Struct square))

9

© Copyright Azul Systems 2016

Data Grouping In Java
Class	Square	{	
		int	x;	
		int	y;	
		int	size;	
};	
	
...	
	
Square	square	=	new	Square();	

int x

int y

int size

Square	

10

© Copyright Azul Systems 2016

Arrays In Java

Square

Square[]	squares	=	new	Square[5];

HEAP

Square Square Square Square

11

© Copyright Azul Systems 2016

Arrays In Java

Square

System.gc();

HEAP

Square
Square

Square
Square

12

© Copyright Azul Systems 2016

Arrays In Java

Square

square[2]	=	new	FilledSquare();

HEAP

Square
Square

FilledSquare
Square

13

© Copyright Azul Systems 2016

Array Semantics: Structs v. Objects
§  C

– An immutable array of exact same size structures
§  Java

– A mutable array of same base type objects
– Can change the object reference of an array element
– squares[] could hold Square or FilledSquare objects

§ No guarantee Square and FilledSquare are the same size

14

© Copyright Azul Systems 2016

org.ObjectLayout Target Forms
§  The common C-style constructs we seek to match:

– array of structs
 struct	foo[];	

– struct with struct inside
 struct	foo	{	int	a;	struct	bar	b;	int	c;	};	

– struct with array at the end
 struct	packet	{	int	length;	char[]	body;	}	

§  All of these can be expressed in Java
§  None are currently (speed) matched in Java

15

© Copyright Azul Systems 2016

Modeled On java.util.concurrent
§  Captured semantics enabled fast concurrent operations
§  No language changes
§  No required JVM changes
§  Implementable in “vanilla” Java classes outside of JDK

– e.g. AtomicLong CAS could be done with synchronized
§  JDKs improved to recognize and intrinsify behavior

– e.g. AtomicLong CAS is a single x86 instruction
§  Moved into JDK and Java name space in order to secure

intrinsification and gain legitimate access to unsafe

16

© Copyright Azul Systems 2016

ObjectLayout Starting Point
§  Capture the semantics that enable speed in the various C-

like data layout forms and behaviors
– Theory: without any changes to the language

§  Capture the needed semantics in “vanilla” Java classes
(targeting e.g. Java SE 7)

§  Have JDK/JVM recognize and intrinsify behavior,
optimizing memory layout and access operations
– “Vanilla” and “Intrinsified” implementation behavior should

be indistinguishable (except for speed)

17

© Copyright Azul Systems 2016

ObjectLayout.StructuredArray
§  array of structs

 struct	foo[];	
§  struct with struct inside

 struct	foo	{	int	a;	struct	bar	b;	int	c;	};	
§  struct with array at the end

 struct	packet	{	int	len;	char[]	body;	}	

18

© Copyright Azul Systems 2016

StructuredArray<T>
§  A collection of object instances of arbitrary (exact) type T

§  Captures semantic limitations equivalent to C struct[]

§  Arranged like an array: T	element	=	get(index);	
§  Collection is immutable: cannot replace elements

– Has get(), but no put()

19

© Copyright Azul Systems 2016

StructuredArray<T>
§  Instantiated via factory method:
 a	=	StructuredArray.newInstance(SomeClass.class,	100);	

§  All elements constructed at instantiation time
§  Supports arbitrary constructor and args for members

– Including support for index-specific CtorAndArgs	

20

© Copyright Azul Systems 2016

Context-Based Construction
public	class	Foo	{	
		private	final	long	index;	
	
		public	Foo(long	index)	{	
				this.index	=	index;	
		}	
		...	
}	
	

21

© Copyright Azul Systems 2016

Context-Based Construction

final	Constructor<Foo>	constructor	=		
		Foo.class.getConstructor(Long.TYPE);	
	
final	StructuredArray<Foo>	fooArray	=		
		StructuredArray.newInstance(Foo.class,	
					context	->		
							new	CtorAndArgs<Foo>(constructor,	context.getIndex()),	
					8);	

22

© Copyright Azul Systems 2016

StructuredArray Liveness
§  Initial approach was:

– Reference to element keeps the StructuredArray alive
– This is what happens on other runtimes

§  However, element Objects have real liveness
– Already tracked by the JVM

§  A StructuredArray is just a regular idiomatic collection
– The collection keeps it’s members alive
– Collection members don’t (implicitly) keep it alive

23

© Copyright Azul Systems 2016

Benefits Of Liveness Approach
§  StructuredArray is just a collection of Objects

– No special behavior: acts like any other collection
– Happens to be fast on JDKs that optimize it

§  Elements of a StructuredArray are regular Objects
– Can participate in other collections and object graphs
– Can be locked
– Can have an identity hashcode
– Can be passed along to any existing java code

§  It’s “natural”, and it’s easier to support in the JVM

24

© Copyright Azul Systems 2016

StructuredArray Features
§  Indexes are longs
§  Nested arrays are supported (multi-dimension, composable)

– Non-leaf elements are themselves StructuredArrays
§  StructuredArray is subclassable

– Supports some useful coding styles and optimizations
§  StructuredArray is NOT constructable

– must be created with factory methods

 Did you spot the Catch-22?

25

© Copyright Azul Systems 2016

Optimized JDK implementation
§  A new heap concept: “contained” and “container” objects

– Contained and container objects are regular objects
– Given a contained object, there is a means for the JVM to

find the immediately containing object
– If GC needs to move an object that is contained in a live

container object, it will move the entire container
§  Very simple to implement in all current OpenJDK GC

mechanisms (and in Zing’s C4, and in others, we think)
– More details on github and in project discussion

26

© Copyright Azul Systems 2016

Optimized JDK implementation
§  Streaming benefits come directly from layout

– No compiler optimizations needed
§  Dead-reckoning benefits require some compiler support

– no dereferencing, but….
– e = (T) (a + a.bodySize + (index * a.elementSize));
– elementSize and bodySize are not constant
– But optimizations similar to CHA & inline-cache apply
– More details in project discussion

27

© Copyright Azul Systems 2016

ObjectLayout
§  array of structs

 struct	foo[];	
§  struct with struct inside

 struct	foo	{	int	a;	struct	bar	b;	int	c;	};	
§  struct with array at the end

 struct	packet	{	int	len;	char[]	body;	}	

28

© Copyright Azul Systems 2016

Encapsulated Struct In C
struct	line	{	
		struct	point	endPoint1;	
		struct	point	endPoint2;	
};	
	
...	
	
struct	line	l;	

int x

int y
endPoint2

int x

int y
endPoint1

line

29

© Copyright Azul Systems 2016

Struct-In-Struct Intrinsic Objects

30

Line

endPoint2

Class	Line	{	
		private	final	Point	endPoint1=	new	Point();	
		private	final	Point	endPoint2	=	new	Point();		
}		

Point

endPoint1
Point

© Copyright Azul Systems 2016

Struct-In-Struct Intrinisic Objects
§  Intrinsic objects can be laid out within containing object

31

Class	Line	{	
		private	static	final	Lookup	lookup	=		
						MethodHandles.lookup();	
			
		@Intrinsic	
		private	final	Point	endPoint1	=	IntrinsicObjects	
						.constructWithin(lookup,	“endPoint1”,	this);	
		...	
}		

© Copyright Azul Systems 2016

Struct-In-Struct Intrinsic Objects
§  JVM makes the ‘Struct’ intrinsic to the enclosing object

– Dead-reckoning can be used to determine address
§  Java code sees no change (still an implicit pointer)
§  Must deal with and survive reflection based overwrites

32

© Copyright Azul Systems 2016

Struct-in-Struct Virtual Object
§  Three separate objects
§  VM treats them as one from

GC perspective
§  Contiguous in memory

– Moved as a unit

33

Line

Point

endPoint1

Point

endPoint2

© Copyright Azul Systems 2016

Struct With Array At The End
§  Subclassable arrays
§  Semantics well captured by subclassable arrays classes
§  ObjectLayout describes one for each primitive type

– PrimitiveLongArray, PrimitiveDoubleArray, etc.
§  Also ReferenceArray<T>	
§  StructuredArray<T> is also subclassable, and captures

“struct with array of structs at the end”

34

© Copyright Azul Systems 2016

StructuredArray<StructuredArray<Foo>>

StructuredArray<Foo>

Heap

Foo

 (@Intrisic)Bar (@Intrisic)Baz

ObjectLayout Forms Are Composable

(@Intrinsic length=4)StructuredArray<Moo>

35

© Copyright Azul Systems 2016

Status
§  Vanilla Java code on github: www.objectlayout.org
§  Fairly mature semantically

– Working out “spelling”
§  Intrinsified implementations coming for OpenJDK and Zing
§  Early numbers look good

– E.g. faster HashMap.get()
§  Next steps: OpenJDK project with working code, JEP…
§  Aim: Add ObjectLayout to Java SE (10?)

– Vanilla implementation will work on all JDKs

36

© Copyright Azul Systems 2016

Summary
§  New Java classes: org.ObjectLayout.*

– Propose to move into java namespace in Java SE (10?)
§  Works “out of the box” on Java 7, 8, 9, …

– No syntax changes, No new bytecodes
– No new required JVM behavior

§  Can “go fast” on JDKs that optimize for them
– Relatively simple, isolated JVM changes needed
– Proposing to include “go fast” in OpenJDK (10?)
– Zing will support “go fast” for Java 7, 8, 9, 10…

37

© Copyright Azul Systems 2016

© Copyright Azul Systems 2015

@speakjava azul.com

Q & A

Simon Ritter
Deputy CTO, Azul Systems

38

