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ObjectLayout Project Focus 
§  Match the speed benefits that C-based languages get from 

commonly used forms of memory layout 
– Expose these benefits to normal, idiomatic POJO usage 

§  Speed. For regular Java objects. On the heap 

§  What this is not looking at: 
– Improved footprint 
– Off-heap solutions 
– Immutability 
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Goal Overlap For ObjectLayout 
§  Relationship to value types: None 
§  Relationship to packed objects (JNR/FFI): None 
§  ObjectLayout is focused on a different problem 
§  Minimal overlap does exist 

– In the same way that ArrayList and HashMap overlap as 
containers for groups of objects 
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ObjectLayout Origin 
§  ObjectLayout started with a simple argument: 

– “We need structs in Java…” 
§ People (mis-?)use sun.misc.Unsafe to try and replicate structs 
§ C and C++ get this for free 

– “We already have structs. They are called Objects.” 
§ We need competitive access speed to structs in C/C++ 

– It’s all about capturing “enabling semantic limitations” 
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Where speed comes from 
§  C layout speed benefits are dominated by two factors: 

– Dead reckoning 
– Streaming for arrays of structs 
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Data Grouping In C 
struct	square	{	
		int	x;	
		int	y;	
		int	size;	
};	
	
...	
	
struct	square	s;	

int x 

int y 

int size 

square	 

7 



© Copyright Azul Systems 2016 

Dead Reckoning In C 

0 1 2 3 4 

struct	*sq	=	malloc(sizeof(Struct	square)*5);	 

											sq &sq[3].y	= 														+	(3*sizeof(Struct	square)) 																																										+	sizeof(int); 
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Streaming Arrays In C 

square square square square square 

square 
stride 

sq sq + (3 * sizeof(Struct square)) sq + (4 * sizeof(Struct square)) sq + sizeof(Struct square) sq + (2 * sizeof(Struct square)) 
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Data Grouping In Java 
Class	Square	{	
		int	x;	
		int	y;	
		int	size;	
};	
	
...	
	
Square	square	=	new	Square();	

int x 

int y 

int size 

Square	 
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Arrays In Java 

Square 

Square[]	squares	=	new	Square[5]; 

HEAP 

Square Square Square Square 
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Arrays In Java 

Square 

System.gc(); 

HEAP 

Square 
Square 

Square 
Square 
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Arrays In Java 

Square 

square[2]	=	new	FilledSquare(); 

HEAP 

Square 
Square 

FilledSquare 
Square 
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Array Semantics: Structs v. Objects 
§  C 

– An immutable array of exact same size structures 
§  Java 

– A mutable array of same base type objects 
– Can change the object reference of an array element 
– squares[] could hold Square or FilledSquare objects 

§ No guarantee Square and FilledSquare are the same size 
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org.ObjectLayout Target Forms   
§  The common C-style constructs we seek to match: 

– array of structs 
  struct	foo[];	

– struct with struct inside 
  struct	foo	{	int	a;	struct	bar	b;	int	c;	};	

– struct with array at the end 
  struct	packet	{	int	length;	char[]	body;	}	

§  All of these can be expressed in Java 
§  None are currently (speed) matched in Java 
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Modeled On java.util.concurrent 
§  Captured semantics enabled fast concurrent operations 
§  No language changes  
§  No required JVM changes 
§  Implementable in “vanilla” Java classes outside of JDK 

– e.g. AtomicLong CAS could be done with synchronized 
§  JDKs improved to recognize and intrinsify behavior 

– e.g. AtomicLong CAS is a single x86 instruction 
§  Moved into JDK and Java name space in order to secure 

intrinsification and gain legitimate access to unsafe 
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ObjectLayout Starting Point 
§  Capture the semantics that enable speed in the various C-

like data layout forms and behaviors  
– Theory: without any changes to the language  

§  Capture the needed semantics in “vanilla” Java classes 
(targeting e.g. Java SE 7) 

§  Have JDK/JVM recognize and intrinsify behavior, 
optimizing memory layout and access operations 
– “Vanilla” and “Intrinsified” implementation behavior should 

be indistinguishable (except for speed)  
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ObjectLayout.StructuredArray 
§  array of structs 

  struct	foo[];	
§  struct with struct inside 

  struct	foo	{	int	a;	struct	bar	b;	int	c;	};	
§  struct with array at the end 

  struct	packet	{	int	len;	char[]	body;	}	
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StructuredArray<T> 
§  A collection of object instances of arbitrary (exact) type T 

§  Captures semantic limitations equivalent to C struct[] 

§  Arranged like an array: T	element	=	get(index);	
§  Collection is immutable: cannot replace elements 

– Has get(), but no put() 
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StructuredArray<T> 
§  Instantiated via factory method: 
  a	=	StructuredArray.newInstance(SomeClass.class,	100);	

§  All elements constructed at instantiation time 
§  Supports arbitrary constructor and args for members 

– Including support for index-specific CtorAndArgs	
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Context-Based Construction 
public	class	Foo	{	
		private	final	long	index;	
	
		public	Foo(long	index)	{	
				this.index	=	index;	
		}	
		...	
}	
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Context-Based Construction 

final	Constructor<Foo>	constructor	=		
		Foo.class.getConstructor(Long.TYPE);	
	
final	StructuredArray<Foo>	fooArray	=		
		StructuredArray.newInstance(Foo.class,	
					context	->		
							new	CtorAndArgs<Foo>(constructor,	context.getIndex()),	
					8);	
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StructuredArray Liveness 
§  Initial approach was: 

– Reference to element keeps the StructuredArray alive 
– This is what happens on other runtimes 

§  However, element Objects have real liveness 
– Already tracked by the JVM 

§  A StructuredArray is just a regular idiomatic collection 
– The collection keeps it’s members alive 
– Collection members don’t (implicitly) keep it alive 
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Benefits Of Liveness Approach 
§  StructuredArray is just a collection of Objects 

– No special behavior: acts like any other collection 
– Happens to be fast on JDKs that optimize it 

§  Elements of a StructuredArray are regular Objects 
– Can participate in other collections and object graphs 
– Can be locked 
– Can have an identity hashcode 
– Can be passed along to any existing java code 

§  It’s “natural”, and it’s easier to support in the JVM 
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StructuredArray Features 
§  Indexes are longs  
§  Nested arrays are supported (multi-dimension, composable) 

– Non-leaf elements are themselves StructuredArrays 
§  StructuredArray is subclassable 

– Supports some useful coding styles and optimizations 
§  StructuredArray is NOT constructable 

– must be created with factory methods 

 Did you spot the Catch-22? 
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Optimized JDK implementation  
§  A new heap concept: “contained” and “container” objects 

– Contained and container objects are regular objects 
– Given a contained object, there is a means for the JVM to 

find the immediately containing object 
– If GC needs to move an object that is contained in a live 

container object, it will move the entire container 
§  Very simple to implement in all current OpenJDK GC 

mechanisms (and in Zing’s C4, and in others, we think) 
– More details on github and in project discussion 
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Optimized JDK implementation  
§  Streaming benefits come directly from layout 

– No compiler optimizations needed 
§  Dead-reckoning benefits require some compiler support 

– no dereferencing, but…. 
– e = (T) ( a + a.bodySize + (index * a.elementSize) ); 
– elementSize and bodySize are not constant 
– But optimizations similar to CHA & inline-cache apply 
– More details in project discussion 
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ObjectLayout 
§  array of structs 

  struct	foo[];	
§  struct with struct inside 

  struct	foo	{	int	a;	struct	bar	b;	int	c;	};	
§  struct with array at the end 

  struct	packet	{	int	len;	char[]	body;	}	
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Encapsulated Struct In C 
struct	line	{	
		struct	point	endPoint1;	
		struct	point	endPoint2;	
};	
	
...	
	
struct	line	l;	

int x 

int y 
endPoint2 

int x 

int y 
endPoint1 

line 
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Struct-In-Struct Intrinsic Objects 

30 

Line 

endPoint2 

Class	Line	{	
		private	final	Point	endPoint1=	new	Point();	
		private	final	Point	endPoint2	=	new	Point();		
}		

Point 

endPoint1 
Point 
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Struct-In-Struct Intrinisic Objects 
§  Intrinsic objects can be laid out within containing object 
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Class	Line	{	
		private	static	final	Lookup	lookup	=		
						MethodHandles.lookup();	
			
		@Intrinsic	
		private	final	Point	endPoint1	=	IntrinsicObjects	
						.constructWithin(lookup,	“endPoint1”,	this);	
		...	
}		



© Copyright Azul Systems 2016 

Struct-In-Struct Intrinsic Objects 
§  JVM makes the ‘Struct’ intrinsic to the enclosing object 

– Dead-reckoning can be used to determine address 
§  Java code sees no change (still an implicit pointer) 
§  Must deal with and survive reflection based overwrites 
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Struct-in-Struct Virtual Object 
§  Three separate objects 
§  VM treats them as one from 

GC perspective 
§  Contiguous in memory 

– Moved as a unit 
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Struct With Array At The End 
§  Subclassable arrays 
§  Semantics well captured by subclassable arrays classes 
§  ObjectLayout describes one for each primitive type  

– PrimitiveLongArray, PrimitiveDoubleArray, etc. 
§  Also ReferenceArray<T>	
§  StructuredArray<T> is also subclassable, and captures 

“struct with array of structs at the end” 
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StructuredArray<StructuredArray<Foo>> 

StructuredArray<Foo> 

Heap 

Foo 

 (@Intrisic)Bar (@Intrisic)Baz 

ObjectLayout Forms Are Composable 

(@Intrinsic length=4)StructuredArray<Moo> 
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Status 
§  Vanilla Java code on github: www.objectlayout.org 
§  Fairly mature semantically 

– Working out “spelling” 
§  Intrinsified implementations coming for OpenJDK and Zing 
§  Early numbers look good  

– E.g. faster HashMap.get() 
§  Next steps: OpenJDK project with working code, JEP… 
§  Aim: Add ObjectLayout to Java SE (10?) 

– Vanilla implementation will work on all JDKs 
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Summary 
§  New Java classes: org.ObjectLayout.* 

– Propose to move into java namespace in Java SE (10?) 
§  Works “out of the box” on Java 7, 8, 9, … 

– No syntax changes, No new bytecodes  
– No new required JVM behavior 

§  Can “go fast” on JDKs that optimize for them 
– Relatively simple, isolated JVM changes needed 
– Proposing to include “go fast” in OpenJDK (10?) 
– Zing will support “go fast” for Java 7, 8, 9, 10… 
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