Bringing The Performance of

Structs To Java
(Sort Of)

Simon Ritter
Deputy CTO, Azul Systems

y@speakjava - azul.com

pfAZUL 1
SYSTEMS®

ObjectLayout Project Focus

= Match the speed benefits that C-based languages get from
commonly used forms of memory layout

— Expose these benefits to normal, idiomatic POJO usage
= Speed. For reqular Java objects. On the heap

= \What this is not looking at:
— Improved footprint
— Off-heap solutions
— Immutability

a»AZUL 2
SYSTEMS®

Goal Overlap For ObjectLayout

= Relationship to value types: None

= Relationship to packed objects (JNR/FFI): None
= ObjectLayout is focused on a different problem
= Minimal overlap does exist

— In the same way that ArrayList and HashMap overlap as
containers for groups of objects

g»AZUL 3
SYSTEMS®

Immutable

Return values Speed!
On stack Regular Java objects
Onheap | Value Types ObjectLayout = ©nthe heap

Objects USABLE
BY ALL EXISTING

NEW CODE CODE
Packed objects
Array of & Off the heap
small-footprint INA/EE] Sharing data
values

NEW CODE Precise layout control

OsAzuL
SYSTEMS®

ObjectLayout Origin

= ObjectLayout started with a simple argument:

— “We need structs in Java...”
= People (mis-?)use sun.misc.Unsafe to try and replicate structs
= C and C++ get this for free

— “We already have structs. They are called Objects.”
= \We need competitive access speed to structs in C/C++

— It's all about capturing “enabling semantic limitations”

A»AZUL B
SYSTEMS®

Where speed comes from

= C layout speed benefits are dominated by two factors:
— Dead reckoning
— Streaming for arrays of structs

g»AZUL 6
SYSTEMS®

Data Grouping In C

struct square {
int Xx;
int y;
int size;

s

struct square s;

square

int size

inty

int X

pfAzuL 7
SYSTEMS®

Dead Reckoning In C

struct *sq = malloc(sizeof(Struct square)*5);

0 1 2 3 4

N

&sq[3].y = sq + (3*sizeof(Struct square)) + sizeof(int);

pfAzuL 8
SYSTEMS®

Streaming Arrays In C

square
stride
<< =
square square square square square
A A A A A

ss(+ sizeoRGtrUE Sqimelf St(Gct spempir(dt Sgizaaf{Btruct square))

pfAzuL 9
SYSTEMS®

Data Grouping In Java

Class Square {

int Xx;
int y;
int size; int size
}s Square inty
int x

Square square = new Square();

OyAZUL. (o

Arrays In Java

(o N

Square Square Square Square Square

{

HEAP

- /

Square[] squares = new Square[5];

Arrays In Java

/

=

Square

Square

|

Square

System.gc();

Arrays In Java

/

=

Square

H EAFN

FilledSquare

Square

T / / Square

square[2] = new FilledSquare();

et 1A

Array Semantics: Structs v. Objects

= C
— An immutable array of exact same size structures
= Java
— A mutable array of same base type objects
— Can change the object reference of an array element

— squares|[] could hold Square or FilledSquare objects
* No guarantee Square and FilledSquare are the same size

OyAZUL 14

org.ObjectLayout Target Forms

= The common C-style constructs we seek to match:
— array of structs
struct foo[];
— struct with struct inside
struct foo { int a; struct bar b; int c; };
— struct with array at the end
struct packet { int length; char[] body; }
= All of these can be expressed in Java
= None are currently (speed) matched in Java

OyAZUL 5

Modeled On java.util.concurrent

Captured semantics enabled fast concurrent operations
No language changes

No required JVM changes

Implementable in “vanilla® Java classes outside of JDK
—e.g. AtomicLong CAS could be done with synchronized
JDKs improved to recognize and intrinsify behavior
—e.g. AtomicLong CAS is a single x86 instruction

Moved into JDK and Java name space in order to secure
intrinsification and gain legitimate access to unsafe

OyAZUL s

ObjectLayout Starting Point

= Capture the semantics that enable speed in the various C-
like data layout forms and behaviors

— Theory: without any changes to the language

= Capture the needed semantics in “vanilla” Java classes
(targeting e.g. Java SE 7)

= Have JDK/JVM recognize and intrinsify behavior,
optimizing memory layout and access operations

—“Vanilla” and “Intrinsified” implementation behavior should
be indistinguishable (except for speed)

OyAZUL 17

ObjectLayout.StructuredArray

= array of structs
struct fool];

StructuredArray<T>

= A collection of object instances of arbitrary (exact) type T
= Captures semantic limitations equivalent to C struct([]

= Arranged like an array: T element = get(index);
= Collection is immutable: cannot replace elements
— Has get(), but no put()

Oy AZUL. 1o

StructuredArray<T>

= Instantiated via factory method:
a = StructuredArray.newInstance(SomeClass.class, 100);

= All elements constructed at instantiation time
= Supports arbitrary constructor and args for members
— Including support for index-specific CtorAndArgs

OyAZUL.

Context-Based Construction

public class Foo {
private final long index;

public Foo(long index) {
this.index = index;

¥

Oy AZUL. 2

Context-Based Construction

final Constructor<Foo> constructor =
Foo.class.getConstructor(Long.TYPE);

final StructuredArray<Foo> fooArray =

StructuredArray.newInstance(Foo.class,
context ->

new CtorAndArgs<Foo>(constructor, context.getIndex()),
8);

OyAZUL. 2

StructuredArray Liveness

= Initial approach was:
— Reference to element keeps the StructuredArray alive
— This is what happens on other runtimes

= However, element Objects have real liveness
— Already tracked by the JVM

= A StructuredArray is just a regular idiomatic collection
— The collection keeps it's members alive
— Collection members don'’t (implicitly) keep it alive

OyAZUL 3

Benefits Of Liveness Approach

= StructuredArray is just a collection of Objects
— No special behavior: acts like any other collection
— Happens to be fast on JDKs that optimize it

= Elements of a StructuredArray are regular Objects
— Can participate in other collections and object graphs
— Can be locked
— Can have an identity hashcode
— Can be passed along to any existing java code

= |t's “natural”, and it’s easier to support in the JVM

Oy AZUL 24

StructuredArray Features

= Indexes are longs
= Nested arrays are supported (multi-dimension, composable)

— Non-leaf elements are themselves StructuredArrays
= StructuredArray is subclassable

— Supports some useful coding styles and optimizations
= StructuredArray is NOT constructable

— must be created with factory methods

Did you spot the Catch-227?

OyAZUL. s

Optimized JDK implementation

= A new heap concept: “contained” and “container” objects
— Contained and container objects are regular objects

— Given a contained object, there is a means for the JVM to
find the immediately containing object

— |If GC needs to move an object that is contained in a live
container object, it will move the entire container

= Very simple to implement in all current OpenJDK GC
mechanisms (and in Zing's C4, and in others, we think)

— More details on github and in project discussion

OyAZUL.

Optimized JDK implementation

= Streaming benefits come directly from layout
— No compiler optimizations needed

= Dead-reckoning benefits require some compiler support
— no dereferencing, but....
—e = (T) (a + a.bodySize + (index * a.elementSize));
— elementSize and bodySize are not constant
— But optimizations similar to CHA & inline-cache apply
— More detalls in project discussion

OyAZUL 7

ObjectLayout

= struct with struct inside
struct foo { int a; struct bar b; int c; };

= struct with array at the end
struct packet { int len; char[] body; }

OyAZUL

Encapsulated StructIn C

struct line {

struct point endPointl;
struct point endPoint2;

s

struct line 1;

4 inty N
int X
line .
Inty
\ int X /

Oy AZUL

Struct-In-Struct Intrinsic Objects

Class Line {
private final Point endPointl= new Point();
private final Point endPoint2 = new Point();

}

| I Point
Line
[endPoint! | |
\ { Point
endPoint2
. >

OyAZUL. 0

Struct-In-Struct Intrinisic Objects

= Intrinsic objects can be laid out within containing object

Class Line {
private static final Lookup lookup =
MethodHandles.lookup();

@Intrinsic
private final Point endPointl = IntrinsicObjects
.constructWithin(lookup, “endPointl®, this);

oyAazuL s

Struct-In-Struct Intrinsic Objects

= JVM makes the ‘Struct’ intrinsic to the enclosing object
— Dead-reckoning can be used to determine address

= Java code sees no change (still an implicit pointer)
= Must deal with and survive reflection based overwrites

OyAZUL 3

Struct-in-Struct Virtual Object

= Three separate objects

: g Line h .= VM treats them as one from
N | | GC perspective
| J i = Contiguous in memory
] ' — Moved as a unit
4
Point
Point

OyAzuL 33

Struct With Array At The End

= Subclassable arrays
Semantics well captured by subclassable arrays classes

ObjectlLayout describes one for each primitive type
—PrimitivelLongArray, PrimitiveDoubleArray, etc.

Also ReferenceArray<T>

StructuredArray<T> Is also subclassable, and captures
“struct with array of structs at the end”

OyAZUL. 3

ObjectLayout Forms Are Composable
¥ 74
Heap

StructuredArray<StructuredArray<Foo>>

StructuredArray<Foo>

Foo
(@Intrisic)Bar (@Intrisic)Baz

e’ 5

e
.
STFT Jﬁfﬁ%

(@Intrinsic length=4)StructuredArray<Moo>

OyAzUL 35

Status

Vanilla Java code on github: www.objectlayout.org

Fairly mature semantically

— Working out “spelling”

Intrinsified implementations coming for OpenJDK and Zing
Early numbers look good

— E.g. faster HashMap.get ()

Next steps: OpenJDK project with working code, JEP...
Aim: Add ObjectLayout to Java SE (107?)

— Vanilla implementation will work on all JDKs

OyAzUL 36

Summary

= New Java classes: org.ObjectLayout.”

— Propose to move into java namespace in Java SE (107)
= Works “out of the box” on Java 7, 8, 9, ...

— No syntax changes, No new bytecodes

— No new required JVM behavior
= Can “go fast” on JDKs that optimize for them

— Relatively simple, isolated JVM changes needed

— Proposing to include “go fast” in OpenJDK (107?)

— Zing will support “go fast” for Java 7, 8, 9, 10...

OyAZUL 37

Simon Ritter
Deputy CTO, Azul Systems

y@speakjava - azul.com

OyAzuUL 33

