
Data pipelines
from zero to solid

Lars Albertsson
www.mapflat.com

1

Who’s talking?
Swedish Institute of Computer Science (test tools)
Sun Microsystems (very large machines)
Google (Hangouts, productivity)
Recorded Future (NLP startup)
Cinnober Financial Tech. (trading systems)
Spotify (data processing & modelling)
Schibsted (data processing & modelling)
Independent data engineering consultant

2

Presentation goals
● Overview of data pipelines for analytics / data products
● Target audience: Big data starters

○ Seen wordcount, need the stuff around
● Overview of necessary components & wiring
● Base recipe

○ In vicinity of state-of-practice
○ Baseline for comparing design proposals

● Subjective best practices - not single truth
● Technology suggestions, (alternatives)

3

Presentation non-goals
● Stream processing

○ High complexity in practice
○ Batch processing yields > 90% of value

● Technology enumeration or (fair) comparison
● Writing data processing code

○ Already covered en masse

4

Data product anatomy

5

Cluster storage

Unified log

Ingress ETL Egress

DB
Service

DatasetJob
Pipeline

Service

Export

Business
intelligence

Data
lake

DB
DB

RAM

Input

File

Computer program anatomy

6

Input data

Process Output

File

File
HID

VariableFunction
Execution path

Lookup
structure

Output
data

Window

Data pipeline = yet another program
Don’t veer from best practices
● Regression testing
● Design: Separation of concerns, modularity, etc
● Process: CI/CD, code review, lint tools
● Avoid anti-patterns: Global state, hard-coding location,

duplication, ...
In data engineering, slipping is the norm... :-(
Solved by mixing strong software engineers with data
engineers/scientists. Mutual respect is crucial.

7

Cluster storage
HDFS

(NFS, S3, Google CS, C*)

Event collection

8

Service

Unreliable

Unreliable

Reliable, simple,
write available

Bus with history
Kafka

(Kinesis,
Google Pub/Sub)

(Secor,
Camus)

Immediate handoff to append-only replicated log.
Once in the log, events eventually arrive in storage.

Unified log
Immutable events, append-only,

source of truth

Event registration

9

Unified log

Service
(unimportant)

Events are safe
from here

Replicated bus
with history

Asynchronous fire-and-forget handoff for unimportant data.
Synchronous, replicated, with ack for important data

Service
(important)

Cluster storage
HDFS

(NFS, S3, Google CS, C*)

Event transportation

10

Bus-to-bus WAN mirror
expect delays

Log has long history (months+) => robustness end to end.
Avoid risk of processing & decoration. Except timestamps.

Cluster storage

Event arrival

11

Bundle incoming events into datasets
● Sealed quickly, thereafter immutable
● Bucket on arrival / wall-clock time
● Predictable bucketing, e.g. hour

(Secor,
Camus)

clicks/2016/02/08/14

clicks/2016/02/08/15

Database state collection

12

Cluster storage
HDFS

(NFS, S3, Google CS, C*)

Service

DB

DB

Service

Source of truth sometimes in database.
Snapshot to cluster storage.
Easy on surface...

?

Anti-pattern: Send the oliphants!
● Sqoop (dump with MapReduce) production DB
● MapReduce from production API
Hadoop / Spark == internal DDoS service

13

Cluster storage
HDFS

(NFS, S3, Google CS, C*)

Service

DB

DB

Service

Our preciousss

Deterministic slaves

14

DB

Service

backup
snapshot

Restore

DB

Restore backup to offline slave
+ Standard procedure
- Serial or resource consuming

Cluster storage
HDFS

(NFS, S3, Google CS, C*)

Using snapshots

● join(event, snapshot) => always time mismatch
● Usually acceptable
● Some behaviour difficult to catch with snapshots

○ E.g. user creates, then deletes account

15

DB’DB
join?

Event sourcing

● Every change to unified log == source of truth
● snapshot(t + 1) = sum(snapshot(t), events(t, t+1))
● Allows view & join at any point in time

Application services still need DB for current state lookup
16

DB’DB

Event sourcing, synced database
A. Service interface generates events

and DB transactions

B. Generate stream from commit log
Postgres, MySQL -> Kafka

C. Build DB with stream processing

17

A
P

I
A

P
I

A
P

I

DB snapshot lessons learnt
● Put fences between online and offline components

○ The latter can kill the former
● Team that owns a database/service must own exporting

data to offline
○ Protect online stability
○ Affects choice of DB technology

18

The data lake

Unified log + snapshots
● Immutable datasets
● Raw, unprocessed
● Source of truth from batch

processing perspective
● Kept as long as permitted
● Technically homogeneous

19

Cluster storage

Data lake

Datasets
● Pipeline equivalent of objects
● Dataset class == homogeneous records, open-ended

○ Compatible schema
○ E.g. MobileAdImpressions

● Dataset instance = dataset class + parameters
○ Immutable
○ E.g. MobileAdImpressions(hour=”2016-02-06T13”)

20

Representation - data lake & pipes
● Directory with multiple files

○ Parallel processing
○ Sealed with _SUCCESS (Hadoop convention)
○ Bundled schema format

■ JSON lines, Avro, Parquet
○ Avoid old, inadequate formats

■ CSV, XML
○ RPC formats lack bundled schema

■ Protobuf, Thrift
21

Directory datasets

22

hdfs://red/pageviews/v1/country=se/year=2015/month=11/day=4/_SUCCESS
 part-00000.json
 part-00001.json

● Some tools, e.g. Spark, understand Hive name
conventions

Dataset
class

Instance parameters,
Hive convention

Seal PartitionsPrivacy
level

Schema
version

Ingress / egress representation
Larger variation:
● Single file
● Relational database table
● Cassandra column family, other NoSQL
● BI tool storage
● BigQuery, Redshift, ...
Egress datasets are also atomic and immutable.
E.g. write full DB table / CF, switch service to use it, never
change it.

23

Schemas
● There is always a schema

○ Plan your evolution
● New field, same semantic == compatible change
● Incompatible schema change => new dataset class
● Schema on read - assumptions in code

○ Dynamic typing
○ Quick schema changes possible

● Schema on write - enumerated fields
○ Static typing & code generation possible
○ Changes must propagate down pipeline code 24

Schema on read or write?

25

DB
DB

DB
Service

Service

Export

Business
intelligenceChange agility important here

Production stability important here

Batch processing
Gradual refinement
1. Wash

- time shuffle, dedup, ...
2. Decorate

- geo, demographic, ...
3. Domain model

- similarity, clusters, ...
4. Application model

- Recommendations, ...
26

Data lake

Artifact of business value
E.g. service index

Job
Pipeline

Batch job code
● Components should scale up

○ Spark, (Scalding, Crunch)
● And scale down

○ More important!
○ Component should support local mode

■ Integration tests
■ Small jobs - less risk, easier debugging

27

Language choice
● People and community thing, not a technical thing
● Need for simple & quick experiments

○ Java - too much ceremony and boilerplate
● Stable and static enough for production

○ Python/R - too dynamic
● Scala connects both worlds

○ Current home of data innovation
● Beware of complexity - keep it sane and simple

○ Avoid spaceships: <|*|> |@| <**>
28

Job == function([input datasets]): [output datasets]
● No orthogonal concerns

○ Invocation
○ Scheduling
○ Input / output location

● Testable
● No other input factors
● No side-effects
● Ideally: atomic, deterministic, idempotent

Batch job

29

q

● Pipeline equivalent of Command pattern
● Parameterised

○ Higher order, c.f. dataset class & instance
○ Job instance == job class + parameters
○ Inputs & outputs are dataset classes

● Instances are ideally executed when input appears
○ Not on cron schedule

Batch job class & instance

30

Pipelines
● Things will break

○ Input will be missing
○ Jobs will fail
○ Jobs will have bugs

● Datasets must be rebuilt
● Determinism,

idempotency
● Backfill missing / failed
● Eventual correctness

31

Cluster storage

Data lake

Pristine,
immutable
datasets

Intermediate

Derived,
regenerable

Workflow manager
● Dataset “build tool”
● Run job instance when

○ input is available
○ output missing
○ resources are available

● Backfill for previous failures
● DSL describes DAG
● Includes ingress & egress
Luigi, (Airflow, Pinball)

32

DB

ClientSessions A/B tests

DSL DAG example (Luigi)

33

class ClientActions(SparkSubmitTask):
 hour = DateHourParameter()
 def requires(self):
 return [Actions(hour=self.hour - timedelta(hours=h)) for h in range(0, 12)] + \
 [UserDB(date=self.hour.date)]
 ...

class ClientSessions(SparkSubmitTask):
 hour = DateHourParameter()
 def requires(self):
 return [ClientActions(hour=self.hour - timedelta(hours=h)) for h in range(0, 3)]
 ...

class SessionsABResults(SparkSubmitTask):
 hour = DateHourParameter()
 def requires(self):
 return [ClientSessions(hour=self.hour), ABExperiments(hour=self.hour)]

 def output(self):
 return HdfsTarget(“hdfs://production/red/ab_sessions/v1/” +
 “{:year=%Y/month=%m/day=%d/hour=%H}”.format(self.hour))

 ...

Actions

UserDB

Time shuffle,
user decorate

 Form sessions

 A/B compare

ClientActions

A/B session
evaluation

● Expressive, embedded DSL - a must for ingress, egress
○ Avoid weak DSL tools: Oozie, AWS Data Pipeline

Dataset instance

Job (aka Task) classes

Egress datasets
● Serving

○ Precomputed user query answers
○ Denormalised
○ Cassandra, (many)

● Export & Analytics
○ SQL (single node / Hive, Presto, ..)
○ Workbenches (Zeppelin)
○ (Elasticsearch, proprietary OLAP)

● BI / analytics tool needs change frequently
○ Prepare to redirect pipelines 34

Test strategy considerations
● Developer productivity is the primary value of test

automation
● Test at stable interface

○ Minimal maintenance
○ No barrier to refactorings

● Focus: single job + end to end
○ Jobs & pipelines are pure functions - easy to test

● Component, unit - only if necessary
○ Avoid dependency injection ceremony

35

Testing single job

36

Job

Standard Scalatest harness

file://test_input/ file://test_output/

1. Generate input 2. Run in local mode 3. Verify output

f() p()

● (Tool-specific frameworks, e.g. for Spark?)
○ Usable, but rarely cover I/O - home of many bugs.
○ Tied to processing technology

Don’t commit -
expensive to maintain.
Generate / verify with
code.

Runs well in
CI / from IDE

Testing pipelines - two options

37

Standard Scalatest harness

file://test_input/ file://test_output/

1. Generate input 2. Run custom multi-job

Test job with sequence of jobs

3. Verify output

f() p()

A:

Customised workflow manager setup

+ Runs in CI
+ Runs in IDE
+ Quick setup
- Multi-job
 maintenance

p()
+ Tests workflow logic
+ More authentic
- Workflow mgr setup
 for testability
- Difficult to debug
- Dataset handling
 with Python

f()

B:
● Both can be extended with Kafka, egress DBs

Deployment

38

Hg/git
repo Luigi DSL, jars, config

my-pipe-7.tar.gz
HDFS

Luigi
daemon

> pip install my-pipe-7.tar.gz

Worker
Worker

Worker
Worker

Worker
Worker

Worker
Worker

Redundant cron schedule, higher
frequency + backfill (Luigi range tools)

* 10 * * * bin/my_pipe_daily \
 --backfill 14

All that a pipeline needs, installed atomically

Continuous deployment

39

● Poll and pull latest on worker nodes
○ virtualenv package/version

■ No need to sync
environment & versions

○ Cron package/latest/bin/*
■ Old versions run pipelines to

completion, then exit

Hg/git
repo Luigi DSL, jars, config

my-pipe-7.tar.gz
HDFS

my_cd.py hdfs://pipelines/

Worker

> virtualenv my_pipe/7
> pip install my-pipe-7.tar.gz

* 10 * * * my_pipe/7/bin/*

Start lean: assess needs
Your data & your jobs:
A. Fit in one machine, and will continue to do so
B. Fit in one machine, but grow faster than Moore’s law
C. Do not fit in one machine

● Most datasets / jobs: A
○ Even at large companies with millions of users

● cost(C) >> cost(A)
● Running A jobs on C infrastructure is expensive

40

Lean MVP
● Start simple, lean, end-to-end

○ No parallel cluster computations necessary?
○ Custom jobs or local Spark/Scalding/Crunch

● Shrink data
○ Downsample
○ Approximate algorithms (e.g. Count-min sketch)

● Get workflows running
○ Serial jobs on one/few machines
○ Simple job control (Luigi only / simple work queue)

41

Scale carefully
● Get end-to-end workflows in production for evaluation

○ Improvements driven by business value, not tech
● Keep focus small

○ Business value
○ Privacy needs attention early

● Keep iterations swift
○ Integration test end-to-end
○ Efficient code/test/deploy cycle

● Parallelise jobs only when forced
42

Protecting privacy in practice
● Removing old personal identifiable information (PII)
● Right to be forgotten
● Access control to PII data
● Audit of access and processing

● PII content definition is application-specific
● PII handling subject to business priorities

○ But you should have a plan from day one

43

Data lake Derived

Data retention
● Remove old, promote derived datasets to lake

44

Cluster storage

Data lake Derived

Cluster storage

PII removal

● Must rebuild downstream datasets regularly
○ In order for PII to be washed in x days

45

bobwhite,http://site_a/,2015-01-03T
bobwhite,http://site_b/,2015-01-03T
joeblack,http://site_c/,2015-01-03T

bobwhite,Bath,uk
joeblack,Bristol,uk

bobwhite,http://site_a/,2015-01-03T,Bath,uk
bobwhite,http://site_b/,2015-01-03T,Bath,uk
joeblack,http://site_c/,2015-01-03T,Bristol,uk

34ac,http://site_a/,2015-01-03T
34ac,http://site_b/,2015-01-03T
56bd,http://site_c/,2015-01-03T

34ac,Bath,uk
56db,Bristol,uk

bobwhite,http://site_a/,2015-01-03T,Bath,
uk
bobwhite,http://site_b/,2015-01-03T,Bath,
uk
null,http://site_c/,2015-01-03T,Bristol,uk

34ac,bobwhite
56bd,null

Split out PII,
wash on user
deletion

Key on PII => difficult to wash

Simple PII audit

46

● Classify PII level
○ Name, address, messages, ...
○ IP, city, ...
○ Total # page views, …

● Tag datasets and jobs in code
● Manual access through gateway tool

○ Verify permission, log
○ Dedicated machines only

● Log batch jobs
○ Deploy with CD only, log hg/git commit hash

Parting words + sales plug
Keep things simple; batch, homogeneity & little state
Focus on developer code, test, debug cycle - end to end
Harmony with technical ecosystems
Little technology overlap with yesterday - follow leaders
Plan early: Privacy, retention, audit, schema evolution

Please give feedback -- mapflat.com/feedback
I help companies plan and build these things

47

Bonus slides

48

+ Operations
+ Security
+ Responsive scaling
- Development workflows
- Privacy
- Vendor lock-in

Cloud or not?

Security?
● Afterthought add-on for big data components

○ E.g. Kerberos support
○ Always trailing - difficult to choose global paradigm

● Container security simpler
○ Easy with cloud
○ Immature with on-premise solutions?

50

Data pipelines example

51

Users

Page
views

Sales Sales
reports

Views with
demographics

Sales with
demographics

Conversion
analytics

Conversion
analytics

Views with
demographics

Raw Derived

Form teams that are driven by business cases & need
Forward-oriented -> filters implicitly applied
Beware of: duplication, tech chaos/autonomy, privacy loss

Data pipelines team organisation

Conway’s law

“Organizations which design systems ... are
constrained to produce designs which are
copies of the communication structures of
these organizations.”

Better organise to match desired design, then.

Personae - important characteristics
Architect

- Technology updated
- Holistic: productivity, privacy
- Identify and facilitate governance

Backend developer
- Simplicity oriented
- Engineering practices obsessed
- Adapt to data world

Product owner
- Trace business value to

upstream design
- Find most ROI through difficult

questions

Manager
- Explain what and why
- Facilitate process to determine how
- Enable, enable, enable

Devops
- Always increase automation
- Enable, don’t control

Data scientist
- Capable programmer
- Product oriented

Protect production servers

55

Cluster storage
HDFS

(NFS, S3, Google CS, C*)

DB offline
slave

Service

+ Online service is safe
- Replication may be out of sync
- Cluster storage may be write unavailable

=> Delayed, inaccurate snapshot

Deterministic slaves

56

+ Standard procedure
- Serial or resource

consuming

DB

Service

backup
snapshot

Restore

DB

Service

+ Deterministic
- Ad-hoc solution
- Serial => not scalable

commit
log

Incremental,
controlled replay

DB DB

PII privacy control
● Simplify with coarse classification (red/yellow/green)

○ Datasets, potentially fields
○ Separate production areas

● Log batch jobs
○ Code checksum -> commit id -> source code
○ Tag job class with classification

■ Aids PII consideration in code review
■ Enables ad-hoc verification

57

Audit
● Audit manual access
● Wrap all functionality in gateway tool

○ Log datasets, output, code used
○ Disallow download to laptop
○ Wrapper tool happens to be great for enabling data

scientists, too - shields them from operations.

58

