
© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

GREG LUCK, CO-SPEC LEAD JSR107
@GREGRLUCK CEO | HAZELCAST

10 FEBRUARY 2016

How to speed up your
application using JCache

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Agenda

• Theory of Caching

• Java Caching (JCache), JSR-107

• Code Demo

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Introduction to Caching

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Benefits of Caching

• Performance

• Offload expensive or non-scalable parts of your architecture

• Scale up – get the most out of one machine

• Scale out – add more capacity with more machines

• Excellent Buffer against load variability

And…

• Usually very fast and easy to apply

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

When to Use Caching

• When applications use the same data more than once

• When cost (time / resources) of making an initial copy is less
than fetching or producing the data again or when faster to
request from a Cache

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Common Problem Areas that Benefit

Anything Web Scale Anything where the data is across the network

Compound Data Objects Data Persistence

1 3

2 4

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Database Caching

Moving data from the database into the cache increases processing speed  
and can reduce database licensing and maintenance costs.

Speed ✓

Data  
Store

Application

Cache

Application

Cache

Application

Cache

Application

Cache

Costs ✓ Scalability ✓

~200 us
Average Response Time

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Caches are built primarily in RAM 
in-process or distributed

Flash/SSD  
(serialized form)

Local Storage

Heap 
(Objects)

Opaque to  
GC in RAM  

(serialized form)

<100 ns

< 100ns  
+deserialization time

2

500

1,000+

Latency
Size (GB)

Network Storage

< 50us  
+deserialitzation time

< 140us for 1Gbps  
< 70us for 10Gbps/40Gbps  

+deserialitzation time

20,000+Scaleout across the network  
(serialized form)

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

‘s law

Estimated Performance Improvements

Predicted System Speedup
=

1 / ((1 – Proportion Sped Up) + Proportion Sped Up / Speed up))

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Cache Efficiency

Cache Efficiency = cache hits / total hits
• High efficiency = high offload

• High efficiency = high performance

• How to increase:
- Put reference data in the cache

- Put long lived in the cache.

- Consider frequency of mutability of data

- Put highly used data in cache

- Increase the size of the cache. Today you can create TB sized caches

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Problems to Consider

• Standalone Caches and the N * problem
- As each entry expires, the backing system gets N requests for data where

n is the number of standalone caches. Solution: Use a distributed cache

• Consistency with the System of Record
- How to keep the cache in sync with changes in a backing system. Solution:

Match mutability of data with data safety configuration. Update the cache
and backing store at the same time.

• Consistency with other cache nodes
- How to keep all cache nodes in sync: Solution: Use a distributed cache and

match consistency configuration with data mutability

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

New JCache Standard (JSR107)

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Java Caching (JCache)

What?
• Java Caching (JCache) standardized Caching for the Java Platform*

• A common mechanism to create, access, update and remove
information from Caches

How?
• JSR-107: Java Caching Specification (JCache)

• Java Community Process (JCP) 2.9

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Java Caching (JCache)

Why?
• Standardize! Standardize! Standardize!

- Core Caching Concepts

- Core Caching API 

• Provide application portability between Caching solutions
- Big & Small, Open & Commercial 

• Caching is ubiquitous! 

• Allows frameworks to depend on JCache and stop creating specific
integrations to each and every cache

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Java Caching (Jcache)

Recent History

 Item Date
JCache Final Spec Released 18 March 2014
Spring 4.1 September 2014
Hazelcast 3.3.1 TCK Compliant September 2014
Hazelcast 3.4 (with High-Density Memory Store) November 2014
Hazelcast 3.5 - added HD Memory Store to near cache) June 2015
Most project vendors create implementations June 2014 - June 2015
Hazelcast 3.6 (split brain handler, quorums) January 2016
JCache 1.1 Maintenance Release March 2016

Here now!

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Java Caching (JCache)

Which Platform?

java.util.Map (Java 6/7) Target Platform

Specification (SPEC) Java 6+ (SE or EE)

Reference Implementation (RI) Java 7+ (SE or EE)

Technology Compatibility Kit (TCK) Java 7+ (SE or EE)

Demos and Samples Java 7+ (SE or EE)

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Implementations

Implementations
• JCache Reference Implementation
• Ehcache
• Hazelcast
• Oracle Coherence
• Infinispan
• GridGain/Apache Ignite
• TayzGrid*
• Caffeine* (Ben Manes)

Keep Track
• https://jcp.org/aboutJava/communityprocess/implementations/jsr107/index.html

• * Being verified by spec leads

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Non-Implementation: Gemfire/Geode

Gemfire/Geode have no plans to implement
Why?

• Gemfire and Geode are directly supported in Spring

• Because Spring supports JCache cache annotations you can use
Gemfire/Geode from Spring but that is it.

See:
• http://apache-geode-incubating-developers-forum.70738.x6.nabble.com/

JCache-JSR-107-support-td1255.html

Campaign to have Pivotal Support JCache:
#PivotalJCache campaign for @PivotalGemFire to support #JSR107 #JCache.
Please retweet or mention #PivotalJCache

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Relationship to NoSQL

Difficult/Impossible for NoSQL to fully implement the spec
• Server Side code execution including: Entry Processors, Listeners,

Write-Through etc.

• Strong Consistency is the default consistency model and is not
supported by most/all NoSQL.

Likely that Couchbase will release a partial implementation  
leaving out EntryProcessor and some other methods with an
UnsupportedOperationException if these methods are called. They
have Developer Preview 2 out.

Using With NoSQL
• Use NoSQL like a database and read-through/write-though to it using
CacheLoader/CacheWriter.

• NoSQL gives you scale our persistence - cache gives you very low
latencies

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Java Caching (JCache)

Project Hosting
• JCP Project:

- http://jcp.org/en/jsr/detail?id=107 

• Source Code:
- https://github.com/jsr107 

• Forum:
- https://groups.google.com/forum/?fromgroups#!forum/jsr107

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Java Caching (JCache)

How to get it
• Apache Maven (via Maven Central Repository)

<dependency>

<groupId>javax.cache</groupId>

<artifactId>cache-api</artifactId>

<version>1.0</version>

</dependency>

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Caches and Caching

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Caches and Caching

JSR107 Cache Definition:
A high-performance, low-latency data-structure* in
which an application places a temporary copy of
information that is likely to be used more than once

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Maps vs Cache APIs

java.util.Map (Java 6/7)

Key-Value Based API

Supports Atomic Updates

Entries Don’t Expire

Entries Aren’t Evicted

Entries Stored On-Heap

Store-By-Reference

javax.cache.Cache (Java 6)

Key-Value Based API

Supports Atomic Updates

Entries May Expire

Entries May Be Evicted

Entries Stored Anywhere (ie: topologies)

Store-By-Value and Store-By-Reference

Supports Integration (ie: Loaders / Writers)

Supports Observation (ie: Listeners)

Entry Processors

Statistics

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Features

• java.util.ConcurrentMap like API

• Atomic Operations

• Lock-Free

• Read-Through / Write-Through Integration Support

• Cache Event Listeners

• Fully Generic API = type-safety

• Statistics

• Annotations (for frameworks and containers)

• Store-By-Value semantics (optional store-by-reference)

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Features

• Topology Agnostic
- Topologies not defined or restricted by the specification 

• Efficiently supports:
- “local” in-memory Caching and

- “distributed” server-based Caching

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache Key Classes/Interfaces

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Runtime Structure

Caching  
“service loader”

CachingProvider  
“SPI implementation”

CacheManager  
“manager of caches”

Cache  
“interface to a Cache”

*

Created &
Managed By

Created &
Managed By

“application”

Uses..

Loads &
Tracks

*

*
*

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Cache Managers

javax.cache.CacheManager
• Establishes, configures, manages and owns named Caches

- Caches may be pre-define or dynamically created at runtime

• Provides Cache infrastructure and resources

• Provides Cache “scoping” (say in a Cluster)

• Provides Cache ClassLoaders (important for store-by-value)

• Provides Cache lifecycle management

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Hello World

(via a Cache Manager)
// acquire the default CacheManager
CacheManager manager = Caching.getCacheManager();

// acquire a previously configured cache (via CacheManager)
Cache<Integer, String> cache = manager.getCache(“my-cache”,

Integer.class, String.class);

// put something in the cache
cache.put(123, “Hello World”);

// get something from the cache
String message = cache.get(123);

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Cache Interface & Methods (in IDE)

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Entry Processors

Custom atomic operations for everyone!
// acquire a cache
Cache<String, Integer> cache = manager.getCache(“my-cache”,

String.class, Integer.class);

// increment a cached value by 42, returning the old value
int value =

cache.invoke(“key”, new IncrementProcessor<>(), 42);

 

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Entry Processors

Custom atomic operations for everyone!
public class IncrementProcessor<K>

implements EntryProcessor<K, Integer, Integer>, Serializable {  

@Override  
public Integer process(MutableEntry<K, Integer> entry,
Object... arguments) {

if (entry.exists()) {
int amount =

arguments.length == 0 ? 1 :(Integer)arguments[0];
int current = entry.getValue();
entry.setValue(count + amount);
return current;

} else {
throw new IllegalStateException(“no entry exists”);

}
}

}

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Entry Processors

Custom atomic operations for everyone!
• Eliminate Round-Trips! (in distributed systems)

• Enable development of a Lock-Free API! (simplifies applications) 

*May need to be Serializable (in distributed systems)

Application

CacheCache

Application

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache: Entry Processors

Which is better?
// using an entry processor?
int value = cache.invoke(

“key”, new IncrementProcessor<>(), 42);

// using a lock based API?
cache.lock(“key”);
int current = cache.get(“key”);
cache.put(“key”, current + 42);
cache.unlock(“key”);  

Java 8 Ready!

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Annotations

• JSR107 introduces a standardized set of caching annotations,
which do method level caching interception on annotated
classes running in dependency injection containers.

• Caching annotations are becoming increasingly popular:
- Ehcache Annotations for Spring

- Spring 3’s caching annotations.

• JSR107 Annotations will be added to:
- Java EE 8 (planned?)

- Spring 4.1 (released)

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Annotation Operations

The JSR107 annotations cover the
most common cache operations:

• @CacheResult

• @CachePut

• @CacheRemove

• @CacheRemoveAll

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Fully Annotated Class Example

@CacheDefaults(cacheName = "blogManager")  
public class BlogManager {

@CacheResult  
public Blog getBlogEntry(String title) {...}

@CacheRemove  
public void removeBlogEntry(String title) {...}

@CacheRemoveAll  
public void removeAllBlogs() {...}

@CachePut  
public void createEntry(@CacheKey String title,

@CacheValue Blog blog) {...}

@CacheResult  
public Blog getEntryCached(String randomArg,

@CacheKey String title){...}

}

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache With Spring

• Spring
- uses JCache since 4.1 http://bit.ly/1V0q1Kp

- Added support for JCache cache annotations which can be mixed and
matched with Spring ones

• Spring Boot
- Auto-configuration for any JCache Provider http://bit.ly/1TPQKLx

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

JCache With Java EE

• Java EE
- Can add JCache and an implementation to any Java EE app by adding the

jars and configuring it outside of EE.

• Java EE 8
- JCache added to EE8

- Add JCache Annotations

- Other integration possibilities:

• ejb timer store

• jbatch store

• JPA

- Adam Bien is prepared to lead a JSR to get JCache into EE8. 4
contributors so far. See See https://abhirockzz.wordpress.com/2016/01/21/
jcache-in-java-ee-8/

- Please see me at the Hazelcast booth if you want to join in.

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

The Future

• JCache 1.1 (2016)
- Maintenance Release being worked on, by me ☺

- Just bug fixes

• Java EE 8 Integration (2017)

• JCache 2.0 (Later)
- Transactions

- Async API

- Servlet 4.0 Integration / Session Caching

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Working with Hazelcast JCache

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Hazelcast JCache Support

Full TCK Compliant implementation for:
• Features:

• Embedded Members

• Clients (caches are stored in Members)

• HD Memory Store for members and near cache

• Very Fast Persistence with the Hot Restart Store

• Docs: http://bit.ly/1Q52yDz

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Hazelcast JCache Performance

• Fastest IMDG using competitors
own benchmarks

• See http://bit.ly/1T36n1m

• We added JCache put/get to
Yardstick and will add it to
RadarGun.

© 2016 Hazelcast Inc. Confidential & Proprietary ‹#›

Questions?

Greg Luck
• @gregrluck

• greg@hazelcast.com

Thank you

