
Modelling
Microservices
Petter Måhlén
February 2016

About me

• Building software professionally since 1995
• Infrastructure at Spotify since 2013
• Service Discovery (Nameless)
• Service Framework (http://spotify.github.io/apollo/)
• System-Z
• Currently doing Data infrastructure

About this talk

1. Why model microservices?
2.Our solution: System-Z
3.Design
4.Impact so far

=> Ideas about running microservices at scale

Why model microservices?

Z axis: Sharding
Y axis: Splitting

X axis: Cloning

http://artofscalability.com/

Why model microservices?

Z axis: Sharding
Y axis: Splitting

X axis: Cloning

http://artofscalability.com/
~10k servers

~1100 things

Why model microservices?

Z axis: Sharding
Y axis: Splitting

X axis: Cloning

http://artofscalability.com/

plus ~100 teams writing code

~10k servers

~1100 things

Spotify Organisation

Spotify Organisation

If you need to know exactly
who is making decisions,

you are in the wrong place

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1/

Problems to Solve

Discovering and understanding:
• What things are “out there”
• Deployments and configurations
• The system as a whole, how do things fit together?
• How to get more information: ownership
• What’s broken and how to fix it.

Our solution

What came before
Emil

What came before
Emil

ServiceDB

What came before
Emil

ServiceDB

System-Z

Enter System-Z

• A system for
system metadata

• Z? Wat?

Some terminology

• Component - some thing
• A microservice, data store, data

pipeline, or library
• System - some related things

These terms, like most things Z, are
intentionally vague

Main features

• General component information
• Dependency Tracking
• Managing deployments
• Ownership and alerting

Track Dependencies

Dependency Maps

Deployments

Deployments

See what's where

Deploy stuff Host names redacted

http://github.com/spotify/helios

http://github.com/spotify/helios

Routing

Ownership

Ownership

And...

• Create new components

• Compare live configs

• Check activity (logins, system
updates, etc)

• Check Global stats (Apollo
versions, etc)

• API documentation

• Provision hardware

• Set up service monitoring
dashboards

• Configure data processing
pipeline monitoring

• …

Design

Core data model

Many many-to-many relations
Features add specific data
Discovery names as indirection

user2

user2

login

CLIENTS

user2

user2

login

user3

attributes

create

CLIENTS

user2

user2

login

user2-legacy

user3

attributes

create

CLIENTS

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

create

CLIENTS

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

create

CLIENTS

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

create

CLIENTS

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

createcreate

attributes

CLIENTS

user3

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

createcreate

attributes

CLIENTS

user3

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

createcreate

attributes

CLIENTS

user3

user2

user2

login

user2-legacy

user2-proxy

user3

attributes

createcreate

attributes

CLIENTS

user3

user3

attributes

createcreate

attributes

CLIENTS

user3

YAML files

Loose/multiple schemas
Files live with code

Dirty Data

Organisational change => ownership confusion
Infrastructure evolution => runtime confusion
Owners don’t benefit from metadata quality

Impact

About 200 WAU/400 MAU of ~800 in TPD
Teams integrating features, making them easier to find
Teams talking about features => more consistent
System-Z mentioned as ‘great’ in 2016 ‘What sucks’
Swiss Army Knife (good?)

Conclusions

Microservices => many small things, big picture is hard
Metadata about microservices helps understand the system
Our metadata is dirty; this is probably unavoidable

Combining many tools => better collaboration and
consistency

Questions?

