
Purely functional
programming -
the red pill
JFokus Tutorial 2016

Dierk König
canoo

mittie

Dreaming of code

Why do we care?
a	=	1	

b	=	2	

c	=	b	

b	=	a	

a	=	c

1

1 2

1 2

2

1

1

22

1 2

time1
time2
time3

place1 place2 place3

Operational Reasoning
a	=	1	

b	=	2	

c	=	b	

b	=	a	

a	=	c

1

1 2

1 2 2

1 1 2

2 1 2

time1
time2
time3

place1 place2 place3

We need a debugger!

Using functions
a	=	1	

b	=	2	

						

1

1 2

Using functions
a	=	1	

b	=	2	

						

1

1 2

2 1

swap(a,b)	=	(b,a)

Let’s just program
without

assignments or
statements!

Developer  
Discipline

Pure  
Functional  
Language

Online REPL
try.frege-lang.org

Define a Function
frege>	times	a	b	=	a	*	b	

frege>	times	2	3	

6	

frege>	:type	times	

Num	α	=>	α	->	α	->	α

Define a Function
frege>	times	a	b	=	a	*	b	

frege>(times	2)3	

6	

frege>	:type	times	

Num	α	=>	α	->(α	->	α)

no types declared

function appl.
left associative

typeclass
constraint

only 1
parameter!

return type is
a function!

thumb: „two params
of same numeric type
returning that type“

no comma

Reference a Function
frege>	twotimes			=	times	2	

frege>	twotimes	3	

6		

frege>	:t	twotimes	

Int	->	Int

Reference a Function
frege>	twotimes	x	=	times	2	x	

frege>	twotimes	3	

6	

frege>	:t	twotimes	

Int	->	Int

No
second
arg!

„Currying“, „schönfinkeling“,
or „partial function

application“.
Concept invented by

Gottlob Frege.

inferred types
are more specific

Function Composition
frege>	six	x	=		twotimes	(threetimes	x)	

frege>	six	x	=	(twotimes	.	threetimes)x	

frege>	six			=		twotimes	.	threetimes		

frege>	six	2	

12

Function Composition
frege>	six	x	=		twotimes	(threetimes	x)	

frege>	six	x	=	(twotimes	.	threetimes)x	

frege>	six			=		twotimes	.	threetimes		

frege>	six	2	

12

f(g(x))

(f ° g) x

f ° g

Pattern Matching
frege>	times	0	(threetimes	2)	

0	

frege>	times	0	b	=	0

Pattern Matching
frege>	times	0	(threetimes	2)	

0	

frege>	times	0	b	=	0

unnecessarily evaluated

shortcuttingpattern matching

Lazy Evaluation
frege>	times	0	(length	[1..])	

0
endless sequence

evaluation would never stop

Pattern matching and
non-strict evaluation

to the rescue!

Pure Functions
Java	

T	foo(Pair<T,U>	p)	{…}	

Frege	

foo	::	(α,β)	->	α

What could
possibly happen?

What could
possibly happen?

Pure Functions
Java	

T	foo(Pair<T,U>	p)	{…}	

Frege	

foo	::	(α,β)	->	α

Everything!  
State changes,  

file or db access,
missile launch,…

a is returned

can be cached (memoized)  
can be evaluated lazily  
can be evaluated in advance  
can be evaluated concurrently  
can be eliminated  
 in common subexpressions

can be optimized

Pure Functions

Is my method pure?

Let the type system find out!

 Magic (?)
Think	of	a	generic	function	

f	::	[a]	->	[a]	

and	any	specific	function	

g	::	a	->	b

 Magic (?)

[a] [a]

[b] [b]

f

f

map g map g

 Magic (?)

[1,2,3] [3,2,1]

[2,4,6] [6,4,2]

reverse

reverse

map (*2) map (*2)

Commutative square of natural transformations.  

Robust Refactoring
Changing the order of operations 
 
Requires purity. 
100% safe if the type system  
can detect natural transformations

Applied Category Theory
credits: Phil Wadler, Tech Mesh 2012 - Faith, Evolution, and Programming Languages

QuickCheck
import	Test.QuickCheck 
f	=	reverse 
g	=	(*2)		

commutativity	=	property	(\xs	->	 
	map	g	(f	xs)	==	f	(map	g	xs))

Java Interoperability

Do not mix  
OO and FP,

combine them!

Java -> Frege
Frege compiles Haskell to  
Java source and byte code.

Just call that.

You can get help by using
the :java command in the REPL.

pure native encode java.net.URLEncoder.encode :: String -> String
encode “Dierk König“

 
native millis java.lang.System.currentTimeMillis :: () -> IO Long
millis ()
millis ()
past = millis () - 1000  

Does not compile!

Frege -> Java

This is a key distinction between Frege and  
other JVM languages!

even Java can be pure

allows calling Java  
 but never unprotected!

is explicit about effects 
 just like Haskell

Frege

Prerequisite to safe concurrency and  
deterministic parallelism!

Type System
Global type inference

More safety and less work  
for the programmer

You don’t need to specify any types at all!
But sometimes you do for clarity.

 Mutable 
 I/O

Mutable

Mutable

Keep the mess out!

Pure Computation

Pure Computation

Pure Computation

 Mutable 
 I/O

Mutable

Mutable

Keep the mess out!

Pure Computation

Pure Computation

Pure Computation

Ok, these are Monads. Be brave. Think of them as contexts
that the type system propagates and makes un-escapable.

Thread-
safe by
design!
Checked

by
compiler

 Java
Java

Java

Service Based Design

Frege

Frege

Frege

A typical integration option: use Frege code for services

Some Cool Stuff

Zipping
addzip	[]	_		=	[] 
addzip	_		[]	=	[]		

addzip	(x:xs)	(y:ys)	=	 
							(x	+	y	:	addzip	xs	ys)

Zipping
addzip	[]	_		=	[] 
addzip	_		[]	=	[]		

addzip	(x:xs)	(y:ys)	=	 
							(x	+	y	:	addzip	xs	ys) 
 

use as
addzip	[1,2,3]		
							[1,2,3]		
				==	[2,4,6]

Pattern matching
feels like Prolog

Why only for the (+) function?
We could be more general…

High Order Functions
zipWith	f	[]	_		=	[] 
zipWith	f	_		[]	=	[]		

zipWith	f	(x:xs)	(y:ys)	=	 
							(f	x	y	:	zipWith	f	xs	ys)	

High Order Functions
zipWith	f	[]	_		=	[] 
zipWith	f	_		[]	=	[]		

zipWith	f	(x:xs)	(y:ys)	=	 
							(f	x	y	:	zipWith	xs	ys)

use as
zipWith	(+)	[1,2,3]		
												[1,2,3]		
									==	[2,4,6]	

and, yes we can now define
	 addzip	=			 	
	 	 	 zipWith	(+)										

invented by Gottlob Frege

Fizzbuzz
http://c2.com/cgi/wiki?FizzBuzzTest

https://dierk.gitbooks.io/fregegoodness/  
 chapter 8 „FizzBuzz“

Fizzbuzz Imperative
public	class	FizzBuzz{ 
		public	static	void	main(String[]	args){ 
				for(int	i=	1;	i	<=	100;	i++){ 
						if(i	%	15	==	0{		 
								System.out.println(„FizzBuzz"); 
						}else	if(i	%	3	==	0){ 
								System.out.println("Fizz"); 
						}else	if(i	%	5	==	0){ 
								System.out.println("Buzz"); 
						}else{ 
								System.out.println(i); 
}	}	}	}

Fizzbuzz Logical
fizzes			=	cycle			["",	"",	"fizz"] 
buzzes			=	cycle			["",	"",	"",	"",	"buzz"] 
pattern		=	zipWith	(++)	fizzes	buzzes 
numbers		=	map					show	[1..] 
fizzbuzz	=	zipWith	max	pattern	numbers		

main	_			=	for	(take	100	fizzbuzz)	println

Fizzbuzz Comparison
Imperative Logical

Conditionals 4 0

Operators 7 1

Nesting level 3 0

Sequencing sensitive transparent

Maintainability - - - +

Incremental development - +++

Fibonacci

fib	=	0:	1:	addzip	fib	(tail	fib)	

use as
take	60	fib

a new solution approach

fib		0:1	…	
tail	1	…	
zip		1	…

Fibonacci

fib	=	0:	1:	addzip	fib	(tail	fib)	

use as
take	60	fib

a new solution approach

fib		0	1:1	…	
tail			1	…	
zip				2	…

Fibonacci

fib	=	0:	1:	addzip	fib	(tail	fib)	

use as
take	60	fib

a new solution approach

fib		0	1	1:2	…	
tail					2	…	
zip						3	…

Fibonacci

fib	=	0:	1:	addzip	fib	(tail	fib)	

use as
take	60	fib

a new solution approach

fib		0	1	1	2:3	…	
tail							3	…	
zip								5	…

List Comprehension
Pythagorean triples: a2 + b2 = c2

pyth	n	=	[

	(x,y,z)		

	|	x	<-	[1..n],	y	<-	[1..n],	z	<-	[1..n],		

	x*x	+	y*y	==	z*z	

]	

List Comprehension
Pythagorean triples: a2 + b2 = c2

pyth	n	=	[

	(x,y,z)		

	|	x	<-	[1..n],	y	<-	[1..n],	z	<-	[1..n],		

	x*x	+	y*y	==	z*z	

]	

select from

where

„brute force“ or „executable specification“.
A more efficient solution:

List Comprehension
Pythagorean triples: a2 + b2 = c2

[(m*m-n*n,	2*m*n,	m*m+n*n)		

|	m	<-	[2..],	n	<-	[1..m-1]		

]	

endless production think „nested loop“

„select“
functions

dynamic
„from“

empty
„where“

History
Java promise: „No more pointers!“

But NullPointerExceptions (?)

Frege is different
No More But

state no state (unless declared)
statements expressions (+ „do“ notation)
assignments definitions
variables ST monad as „agent“
interfaces type classes
classes & objects algebraic data types
inheritance parametric polymorphism
null references Maybe
NullPointerExceptions Bottom, error

Frege in comparison

practical

robust

Java
Groovy

Frege
Haskell

Frege in comparison

Java
Groovy

Frege
Haskell

concept by  
Simon Peyton-Jones

Frege makes the Haskell spirit
accessible to the Java programmer
and provides a new level of safety.

apply logic

run computers

practical

robust

Unique in Frege
Global type inference  
 requires a purely functional language 
 (only expressions and parametric polymorphism)  
Purity by default 
 effects are explicit in the type system 
Laziness by default 
Values are always immutable  
Guarantees extend into Java calls

Why Frege
Robustness under parallel execution  
Robustness under composition  
Robustness under increments 
Robustness under refactoring

Enables local and equational reasoning

Best way to learn FP

Why FP matters
Enabling incremental development 
 www.canoo.com/blog/fp1  
 
Brush up computational fundamentals

„An investment in knowledge  
always pays the best interest.“

—Benjamin Franklin

Why Frege

it is just a pleasure to work with

How?
http://www.frege-lang.org 
@fregelang 
stackoverflow „frege“ tag 
edX FP101 MOOC

Gottlob  
Frege

"As I think about acts of integrity and grace,  
I realise that there is nothing in my knowledge
that compares with Frege’s dedication to truth…
It was almost superhuman.“ —Bertrand Russel

"Not many people managed to create a revolution
in thought. Frege did. Twice.“ —Graham Priest
Lecture on Gottlob Frege:
http://www.youtube.com/watch?v=foITiYYu2bc

http://www.youtube.com/watch?v=foITiYYu2bc

FGA
Language level is Haskell Report 2010. 
Yes, performance is roughly ~ Java. 
Yes, the compiler is reasonably fast. 
Yes, we have an Eclipse Plugin. 
Yes, Maven/Gradle/etc. integration. 
Yes, we have HAMT (aka HashMap).  
Yes, we have QuickCheck (+shrinking)  
Yes, STM is almost finished.

How it goes on
Practical project work  
github.com/Dierk/fregeTutorial.git

Purely functional turtle graphics

Game / Web

Software Transactional Memory

