
Speed, scale, query:
can NoSQL give us all three?

Arun Gupta, @arungupta
Matthew Revell, @matthewrevell

Couchbase

©2015 Couchbase Inc. 2

The project management triangle

Photo by https://www.flickr.com/photos/centralasian/ CC-BY

©2015 Couchbase Inc. 3

The data storage triangle

Query

Distributability Consistency

The data storage star

Accuracy

Ease Availability

Flexibility

Scale

Speed

Hardware
costs

©2015 Couchbase Inc. 4

The data storage circle

Query

Distributability Consistency

Accuracy

Ease Availability

Flexibility

Scale

Speed

Hardware
costs

©2015 Couchbase Inc. 5

What affects speed, scale and query?

©2015 Couchbase Inc. 6

First up: data models

©2015 Couchbase Inc. 7

What do we mean by NoSQL?

NoSQL Non-relational

©2015 Couchbase Inc. 8

Four popular NoSQL data models

Key-value
Email advocates@couchbase.com

Key Value

Profile {
 "name": "A Person",
 "location": "Someplace"
}

Logo

©2015 Couchbase Inc. 9

Four popular NoSQL data models

Document
Key

{
 "name": "A Person",
 "location": "Place",
 "team": "Team A",
 "interests": "music"
}

{
 "name": "A Person",
 "location": "Place",
 "team": "Team A",
 "interests": "music"
}

©2015 Couchbase Inc. 10

Author Column 1 Row

Four popular NoSQL data models

Columnar

JK Rowling

Column 2

Harry Potter and the
Philosopher's Stone 1997

Title Year of release

Harry Potter and the
Chamber of Secrets 1998

Harry Potter and the
NoSQL database 2016

©2015 Couchbase Inc. 11

Four popular NoSQL data models

Graph

This is Euler

Guitar

Queen

Brian
May

played by

©2015 Couchbase Inc. 12

Data model is the first consideration

Graph

Key-value Object

Columnar

Document

Relational

©2015 Couchbase Inc. 13

Next up: architecture

©2015 Couchbase Inc. 14

Master-slave

Master

Slave 1 Slave 2 Slave 3 Slave 4

©2015 Couchbase Inc. 15

Master-master: replicated topology

Master

Master Master

©2015 Couchbase Inc. 16

Master-master: distributed topology

Master Master Master

©2015 Couchbase Inc. 17

Master-master: replicated v distributed

Replicated Distributed

Dataset must fit on one
machine

Dataset is sharded across
machines: can be huge

Write to/read from any machine

Eventually consistent CP or AP

©2015 Couchbase Inc. 18

Architecture is the second consideration

Master-master:
replicated

Master-slave

Master-master:
distributed

©2015 Couchbase Inc. 19

How do data model and architecture influence
speed, query and scalability?

©2015 Couchbase Inc. 20

Four examples

• Single server key-value store

• Master-slave document store

• Multi-master eventually consistent column store

• Multi-master strongly consistent document store

©2015 Couchbase Inc. 21

Single server, key-value

Master

GET

©2015 Couchbase Inc. 22

Single server

Master

GET

SET

©2015 Couchbase Inc. 23

Single server, key-value

Master

Impact
Data model Architecture

Speed None None

Query None None

Scale Need to choose AP or CP Manual sharding on the
application layer

©2015 Couchbase Inc. 24

Master-slave, document

Master

GET

Slave Slave

©2015 Couchbase Inc. 25

SET

Master-slave, document

Master

GET

Slave Slave

©2015 Couchbase Inc. 26

Master-slave, document

Master Slave Slave

Impact
Data model Architecture

Speed None Favours reads, over writes

Query Ad-hoc query possible Eventual consistency

Scale Distinct documents are
easily distributed

Master is a SPOF

©2015 Couchbase Inc. 27

Dynamo-like distributed master-master column store

Master Master Master

SET

©2015 Couchbase Inc. 28

SET

Master

Dynamo-like distributed master-master column store

Master Master X

©2015 Couchbase Inc. 29

GET

Dynamo-like distributed master-master column store

Master Master Master X Master

©2015 Couchbase Inc. 30

Dynamo-like distributed master-master column store

Master Master Master

Impact
Data model Architecture

Speed Favours writes, over reads Favours reads, over writes

Query Favours range-queries
Ad-hoc not so easy

Eventual consistency
complicates queries

Scale None No SPOFs
High write availability
Linear scalability

©2015 Couchbase Inc. 31

Distributed master-master, strong consistency, document

Active Active Active

SET

Replica Replica Replica

©2015 Couchbase Inc. 32

Distributed master-master, strong consistency, document

Active Active Active

SET

Replica Replica Replica

©2015 Couchbase Inc. 33

Distributed master-master, strong consistency, document

Active Active Active

GET

Replica Replica Replica

©2015 Couchbase Inc. 34

Distributed master-master, strong consistency, document

Active Active Active

GET

Replica Replica Replica

©2015 Couchbase Inc. 35

Distributed master-master, strong consistency, document

Active Active

FAILURE?

Replica Replica

Active

Replica
X

©2015 Couchbase Inc. 36

Distributed master-master, strong consistency, document

Active Active

FAIL
OVER

Replica Replica
X

©2015 Couchbase Inc. 37

Distributed master-master, strong consistency, document

Active Active

FAIL
OVER

Replica Replica
X

©2015 Couchbase Inc. 38

Distributed master-master, strong consistency, document

Query

Index

Query

NODE
SPECIALISATION

Data Index Data Data

©2015 Couchbase Inc. 39

Distributed master-master, strong consistency, document

Query Query

MULTI-DIMENSIONAL
SCALING

Data Index Data Data Index
Index Index

©2015 Couchbase Inc. 40

Distributed master-master, strong consistency, document

Query

MULTI-DIMENSIONAL
SCALING

Data Index Data Data
Index Index

Data Query Query Query

©2015 Couchbase Inc. 41

Distributed master-master, strong consistency, document

Active Active Active

Replica Replica Replica

Impact
Data model Architecture

Speed Simple GETs and SETs Single read, optionally single
write

Query Simplifies complex ad-hoc
query

Strong consistency makes
complex query easier

Scale Distinct documents are
easily distributed

Linear scalability
No SPOFs
No conflicts

©2015 Couchbase Inc. 42

Diving deeper into query

©2015 Couchbase Inc. 43

The first NoSQL approach to query

Photo by Donarreiskoffer. CC-by-3.0

©2015 Couchbase Inc. 44

Manual secondary indexes

©2015 Couchbase Inc. 45

Map-Reduce was one of the first steps towards query

©2015 Couchbase Inc. 46

Declarative query for NoSQL

©2015 Couchbase Inc. 47

Declarative query

• DB-specific: Neo4J's Cypher or MongoDB's query

• Attempts at standardisation: Jsoniq

• SQL reworked for a non-relational model

©2015 Couchbase Inc. 48

DB-specific query: MongoDB

db.staff.find({office: 'London'})

db.staff.find({office: {$in:['London', 'Amsterdam']}})

db.staff.insert({name: 'Matthew Revell', office:
'London'})

db.staff.update({name: 'Matthew Revell',
 office: 'Amsterdam'})

©2015 Couchbase Inc. 49

Attempt at standardisation: JSONiq

• Based on XQuery

• Functional language

• Works with sets, rather than tuples

©2015 Couchbase Inc. 50

Attempt at standardisation: JSONiq

for $p in collection('staff')

where $p.serviceyears gt 2

let $name := $p.firstname || " " || $p.lastname

group by $p.office

order by $p.serviceyears

return { $name, $p.office, $p.serviceyears }

©2015 Couchbase Inc. 51

SQL for NoSQL: what needs to change?

• Data is nested

• Schema is unenforced, so data is heterogenous

• Data is not normalised

©2015 Couchbase Inc. 52

SQL for NoSQL: SQL++

©2015 Couchbase Inc. 53

SQL for NoSQL: SQL++

• Superset of SQL for semi-structured data

• Handles missing data gracefully and/or explicitly

• Can query inside nested data

• Nests and unnests data in results

• JOINs between documents

©2015 Couchbase Inc. 54

Introducing N1QL: SQL++ in action

©2015 Couchbase Inc. 55

Finding all the airports

SELECT * FROM `travel-sample`
WHERE type='airport';

©2015 Couchbase Inc. 56

Limiting and ordering our results

SELECT * FROM `travel-sample`
WHERE type='airport'
ORDER BY COUNTRY
LIMIT 10;

©2015 Couchbase Inc. 57

Working with documents

{
 "id": 3469,
 "type": "airport",
 "airportname": "San Francisco Intl",
 "city": "San Francisco",
 "country": "United States",
 "faa": "SFO",
 "icao": "KSFO",
 "tz": "America/Los_Angeles",
 "geo":
 {
 "lat": 37.618972,
 "lon": -122.374889,
 "alt": 13
 }
}

©2015 Couchbase Inc. 58

Working with nested data

SELECT a.name, s.flight, s.utc, r.sourceairport,
r.destinationairport, r.equipment
FROM `travel-sample` r
UNNEST r.schedule s
JOIN `travel-sample` a
ON KEYS r.airlineid
WHERE r.sourceairport="LHR"
AND r.destinationairport = "SFO"
AND s.day=1
ORDER BY s.utc;

©2015 Couchbase Inc. 59

Flying to and from SFO

{
 "callsign": "UNITED",
 "country": "United States",
 "iata": "UA",
 "icao": "UAL",
 "id": 5209,
 "name": "United Airlines",
 "type": "airline"
}

{
 "airline": "UA",
 "airlineid": "airline_5209",
 "destinationairport": "SFO",
 "equipment": "777",
 "id": 57047,
 "schedule": [
 {
 "day": 0,
 "flight": "UA894",
 "utc": "02:32:00"
},
 ...
],
 "sourceairport": "LHR",
 "stops": 0,
 "type": "route"
}

{
 "id": 3469,
 "type": "airport",
 "airportname": "San Francisco Intl",
 "city": "San Francisco",
 "country": "United States",
 "faa": "SFO",
 "icao": "KSFO",
 "tz": "America/Los_Angeles",
 "geo":
 {
 "lat": 37.618972,
 "lon": -122.374889,
 "alt": 13
 }
}

©2015 Couchbase Inc. 60

Prepared statements

• Optimise frequently-run queries
• Execution plan happens once, query is run multiple times

PREPARE LonSanFran FROM
SELECT airline FROM `travel-sample`
WHERE sourceairport="LHR"
AND destinationairport = "SFO";

©2015 Couchbase Inc. 61

Creating indexes

CREATE INDEX ukairports
ON `travel-sample`(type)
WHERE type='airport'
AND country='UK'
USING GSI;

©2015 Couchbase Inc. 62

Mutating data

• DELETE: provide the key to delete the document
• INSERT: provide a key and some JSON to create a new document
• UPSERT: as INSERT but will overwrite existing docs
• UPDATE: change individual values inside existing docs

©2015 Couchbase Inc. 63

Recapping NoSQL speed

©2015 Couchbase Inc. 64

Speed and NoSQL

Data model considerations

Key-value No CPU load,
minimal disk seeks

Document Largely single ops,
minimal disk seeks,
often relatively
simple query

Column Rapid writes

Graph Simplifies
otherwise
expensive queries

Architecture considerations

Master-slave Speeds up reads,
slows writes

Master-master
replicated

Speeds up reads
and writes (with
consistency lag)

Master-master
distributed

Speeds up reads
and writes

©2015 Couchbase Inc. 65

Recapping NoSQL scale

©2015 Couchbase Inc. 66

Scale and NoSQL

Data model considerations

Key-value Each item is
independent, easily
distributed

Document Item independence,
easily distributed.
Indexes might bring
cross-node
dependencies.

Column Distribute column
families, hashed
sharding

Graph Shard based on data

Architecture considerations

Master-slave Speeds up reads,
slows writes

Master-master
replicated

Speeds up reads
and writes (with
consistency lag)

Master-master
distributed

Speeds up reads
and writes

©2015 Couchbase Inc. 67

Scale out, scale up or both: multi-dimensional scaling

Index Service

Couchbase Cluster

Query Service

Data Service

node1 node8

node1 node8 node9

Data Service

Index Service Query Service

©2015 Couchbase Inc. 68

Next steps

©2015 Couchbase Inc. 69

What next?

 Developer portal: developer.couchbase.con

 Forums: forums.couchbase.com

 Free online training: training.couchbase.com/online

 Join your local Couchbase meet-up: bit.ly/couchbasemeetups

 Follow the Couchbase developer community on Twitter:
@couchbasedev

Thank you

Q&A

