=

Speed, scale, query:
can NoSQL give us all three?
Arun Gupta, @arungupta

Matthew Revell, @matthewrevell
Couchbase

The project management triangle Q

Photo by https://www.flickr.com/photos/centralasian/ CC-BY

The data storage stangle e

Ease Speed Availability

Consistency Distributability

Hardware
costs

Flexibility

Query Scale

Accuracy

The data storage circle e

Ease Speed Availability

Consistency Distributability

Hardware
costs

Flexibility

Query Scale

Accuracy

What affects speed, scale and query?

First up: data models

What do we mean by NoSQL?

NoriNab&dtonal

Four popular NoSQL data models (-

Key-value

Lioey0 Value

Email

Profile

"name": "A Person",
"Tocation": "Someplace"

Four popular NoSQL data models (-

Document

Key {

"name": "A Person",
"location": "Place",
"team": "Team A",
"interests": "music"

Four popular NoSQL data models (s

Harry Potter and the
Philosopher's Stone 1997

. Harry Potter and the
JK ROW“ng Chamber of Secrets 1998

Harry Potter and the 5
NoSQL database 201

Four popular NoSQL data models

played by

Guitar

This is Euler

Data model is the first consideration

Relational

Object Key-value

Graph Document

Columnar

Next up: architecture

Master-slave

Web Application Server

A

[

N

Slave 1

N—

N

Slave 2

N—

v

Web Application Server

Master-master: replicated topology

A

v

Web Application Server

[

Web Application Server

Master-master: distributed topology

=

Web Application Server Web Application Server

Master-master: replicated v distributed

Dataset must fit on one Dataset is sharded across
machine machines: can be huge

Write to/read from any machine

Eventually consistent CP or AP

Architecture is the second consideration

Master-master:
distributed

Master-master: Master-slave

replicated

=

How do data model and architecture influence
speed, query and scalability?

Four examples

* Single server key-value store
* Master-slave document store
* Multi-master eventually consistent column store

* Multi-master strongly consistent document store

Single server, key-value

GET

[

Web Application Server

A

731

Master

Single server

GET
SET

=

Web Application Server

A

L8

Master

Single server, key-value

Impact

- Data model Architecture

Speed None None
Query None None

Scale Needtochoose APorCP Manual sharding on the
application layer

=

Web Application Server

A

1.6

Master

Master-slave, document

GET

Web Application Server

Master

.\

Master-slave, document

GET
SET

[

Web Application Server

A

e

Master

Master-slave, document (=

Impact

- Data model Architecture

Speed None Favours reads, over writes

Query Ad-hoc query possible Eventual consistency

Scale Distinct documents are Masteris a SPOF
easily distributed

Dynamo-like distributed master-master column store (-

Web Application Server Web Application Server

IVIas’Eer Masfer Masfer

Dynamo-like distributed master-master column store (-

l bl
] a
Web Application Server Web Application Server

i)

Master

Dynamo-like distributed master-master column store (-

\im/ (APP) ‘§|‘/ (APP)
Web Application Server Web Application Server
] =

<)

Master Master

Dynamo-like distributed master-master column store

Impact

- Data model Architecture T

Speed Favours writes, over reads Favours reads, over writes =
Query Favours range-queries Eventual consistency

Ad-hoc not so easy complicates queries
Scale None No SPOFs

High write availability
Linear scalability

Distributed master-master, strong consistency, document ()

[=

Web Application Server

SET

Active A@e Active

Replica Replica Replica

Distributed master-master, strong consistency, document

o

SET

2

Web Application Server

ATe AfRle

Active

Replica Replica
& L&

Replica
[B

Distributed master-master, strong consistency, document ()

o
| Rl P
4 = Web Application Server
- 2

AT Afe A

Replica Replica Replica
& L& [B

Distributed master-master, strong consistency, document ()

B

Web Application Server

GET

Active

AT WAl ATSle

Replica Replica
& L&

Replica
[B

Distributed master-master, strong consistency, document ()

FAILURE? =

AEe

A@e

Replica
&

Replica Replica
L& [B

Distributed master-master, strong consistency, document ()

OVER g

Replica

Replica
R

Distributed master-master, strong consistency, document

)

FAIL
OVER

AEe

Replica
&

A¢!

(g

Replica
R

Distributed master-master, strong consistency, document ()

NODE -
SPECIALISATION

Distributed master-master, strong consistency, document ()

MULTI-DIMENSIONAL [
SCALING

Query

Distributed master-master, strong consistency, document ()

MULTI-DIMENSIONAL T

SCALING
Data Data DEIE:

Distributed master-master, strong consistency, document ()

Impact

- Data model Architecture

Speed Simple GETs and SETs Single read, optionally single m
write
Query Simplifies complex ad-hoc Strong consistency makes
query complex query easier
Scale Distinct documents are Linear scalability 4 & Active
easily distributed No SPOFs
. Replica Replica Replica
No conflicts e -

Diving deeper into query

The first NoSQL approach to query

Photo by Donarreiskoffer. CC-by-3.0

Manual secondary indexes

city::london

NoOUT R WN =

i
"people": [
123,
444,
555
]
1

Documents Filter

Document ID

Loglapldy QClzaic Documenty

u:123 Releiey WSRRARRY _ 52

14
2 "email": "matthewf@couchbase.com",
3 "offic "London", P
4 "title": "Director of Developer Advocacy", Edlt Documenl DEIBle
5 "team": "Developer Advocacy",

"manager": "Matt Ingenthron",
"start-date": "2014-01-06",
"meet-up-groups”: [

"London" ,

"Dublin”,

"Manchester"”

1.
"conferences": [

0SCON Europe"”,
: "Amsterdam"”,

"booth",
"speaker"

1
"étart-date“e "2015
"end-date": "2015-10-28

s
"name": "Topconf",
"location": "Talinn",
"roles": "speaker",
"start-date": "2015-11-17",
"end-date": "2015-11-18"

b

{
"name": "Percona Live EU",
"location": "Amsterdam”,
"roles": "speaker",
"start-date”: " .
"end-date": "2015

}

1

Edit Document = Delete

Edit Document = Delete

Edit Document = Delete

Map-Reduce was one of the first steps towards query

W VIEW CODE W M

Map

Reduce (built in: _count, _sum, _stats)
function (doc, meta) {

if (doc.office === "London") {

1 1
2

3 emit (meta.id, null);

4

5

F| |ter Resu ItS ?stale=false&inclusive_end=true&connection_timeout=60000&limit=108&skip=0 W

Development Time Subset m

Key Value

"u::123"

null
u:123

"u::444"
- null
u::444

"u::555"
null
u::555

Declarative query for NoSQL

Declarative query

* DB-specific: NeogJ's Cypher or MongoDB's query
* Attempts at standardisation: Jsoniq

 SQL reworked for a non-relational model

DB-specific query: MongoDB

db.staff.find({office: 'London'})
db.staff.find({office: {$in:['London', 'Amsterdam']}})

db.staff.insert({name: 'Matthew Revell', office:
"London'})

db.staff.update({name: 'Matthew Revell',
office: 'Amsterdam'})

Attempt at standardisation: JSONiIq

* Based on XQuery
* Functional language

* Works with sets, rather than tuples

Attempt at standardisation: JSONiIq

for $p in collection('staff')
where $p.serviceyears gt 2

let $name := $p.firstname || || $p.lastname
group by $p.office
order by $p.serviceyears

return { $name, $p.office, $p.serviceyears }

SQL for NoSQL: what needs to change?

* Datais nested
* Schema is unenforced, so data is heterogenous

 Datais not normalised

SQL for NoSQL: SQ

L++

1405.3631v7 [cs.DB] 29 Apr2015

arXiv

The SQL++ Query Language:
Configurable, Unifying and Semi-structured

Kian Win Ong, Yannis Papakonstantinou, Romain Vernoux
{kianwin,yannis,rvernoux}@cs.ucsd.edu

ABSTRACT

NoSQL databases support semi-structured data, typically
modeled as JSON. They also provide limited (but expand-
ing) query languages. Their idiomatic, non-SQL language
constructs, the many variations, and the lack of formal se-
‘mantics inhibit deep understanding of the query languages,
and also impede progress towards clean, powerful, declara-
tive query languages.

This paper specifies the syntax and semantics of SQL+ +,
which is appllclble to both JSON native stores and SQL

databases. The SQL++ semi-structu ta model is a su-
perset of both “JSON and the SQL data model. SQL++ of-
fers powerful computational capabilities for processing semi-
structured data akin to prior non-relational query languages,
notably OQL and XQuery. Yet, SQL++ is SQL backwards
compatible and is generalized towards JSON by introducing
only a small number of query language extensions to SQL.
Indeed, the SQL capabilities are most often extended by re-
‘moving semantic restrictions of SQL, rather than inventing
new features.

Recognizing that a query language standard is probably
premature for the fast evolving area of NoSQL databases,
SQL-++ includes configuration options that formally item-
ize the semantics variations that language designers may
choose from. The options often pertain to the treatment
of semi-structuredness (missing attributes, heterogeneous
types, etc), where more than one sensible approaches are
possible.

SQL-++ is unifying: By appropriate choices of configu-
ration options, the SQL++ semantics can morph into the
semantics of existing semi-structured database query lan-
guages. The extensive experimental validation shows how
SQL and four semi-structured database query languages
(MongoDB, Cassandra CQL, Couchbase N1QL and Aster-
ixDB AQL) are formally described by appropriate settings

the configuration options.

Early adoption signs of SQL 4+ are positive: Version 4
of Couchbase's N1QL is explained as syntactic sugar over
SQL++. AsterixDB will soon support the full SQL++ and
Apache Drill is in the process of aligning with SQL++.

1. INTRODUCTION

Numerous databases marketed as SQL-on-Hadoop,
NewSQL and NoSQL support Big Data applications. These
databases generally support the 3Vs [7]. (i) Volume: amount
of data (i) Velocity: speed of data in and out (iii) Variety:
semi-structured and heterogeneous data. Due to the Variety
requirement, they have adopted semi-structured data mod-
els, which are generally different subsets of enriched JSON.!

Their evolving query languages fall short of full-fledged
semi-structured query language capabilities? and have many
variations. Some variations are due to superficial syntactic
differences. However, other variations are genuine differ-
ences in query language capabilities and semantics. The lack
of succinct, formal syntax and semantics inhibits a deep un-
derstanding of the various systems. It also impedes progress
lerdx declarative languages for querying semi-structured

SQLo+ is uwml-etruclnred query language that is back-
wards compatible with SQL, in order to be easily understood
and adopted by SQL programmers. The described semi-
structured SQL++ data model is a superset of JSON and
the SQL data model. The SQL+-+ model expands JSON
with bags (as opposed to having JSON arrays only) and en-
riched values, i.e., atomic values that are not only numbers
and strings (vendors have already adopted this extension
[5]). Vice versa, one may think of SQL++ as expanding SQL
with JSON features: arrays, heterogeneity, and the possibil-
ity that any value may be an arbitrary composition of the
array, bag and tuple constructors, hence enabling arbitrary
nested structures, such as arrays of arrays. The SQL++
language inputs and outputs SQL++ data. It makes
the following contributions towards the evolution of query
hnguu;es for JSON databases.
Full fleged_semi-structured language Many commercil
JSON as key-value and ds
databases. Others started with SQL as their base. In ei-
ther case, they grow towards full-fledged JSON databases.
SQL++ provides a full-fledged target language whose se-
mantics pick the salient features of past full-fledged declar-
ative query languages for non-relational data models: OQL
[2], the nested relational model and query languages [8, 15, 1]
and XQuery (and other XML-based query languages) [14, 6,
4| Importantly, in the spirit of XQuery and OQL, SQL++
is a fully composable and semi-structured , hence
being able to input and output nested and heterogeneous

9" As explained below, the SQL data model itself is a subset of

enriched J
9*They also fll short of full-ledged SQL capabilites also.

SQL for NoSQL: SQOL++

Superset of SQL for semi-structured data

Handles missing data gracefully and/or explicitly

* Canquery inside nested data

Nests and unnests data in results

JOINs between documents

Introducing N2QL: SQL++ in action

Finding all the airports

SELECT * FROM travel-sample
WHERE type='airport';

Limiting and ordering our results

2. chg

SELECT * FROM travel-sample
WHERE type='airport'

ORDER BY COUNTRY

LIMIT 10;

Working with documents

{

"1d": 3469,
"type": "airport",
"airportname": "San Francisco Intl",
"city": "San Francisco",
"country": "United States",
"faa": "SFoO",
"i1cao": "KSFO",
"tz": "America/Los_Angeles",
"geo":
{

"lat": 37.618972,

"lon": -122.374889,

"alt": 13
¥

}

Working with nested data

WHERE r.sourceairport="LHR"
AND r.destinationairport = "SFO"

Flying to and from SFO

{
"callsign": "UNITED",
"country": "United States",
"jata": "uA",
"jcao": "UAL",
"id": 5209, {
"name": "United Airlines", "airline": "UA",
"type": "airline" "airlineid": "airline_5209
} "dest1nat1ona1rport"'
equ1pment P - ,
i o47,
{]
"id": 3469,
"type": "airport", "day": O,
"airportname : "San Francisco Int "flight": "uA894",
"city": "San Francisco" "utc": "02:32:00"

countr , BE
"faa"
"jcao": "KSFO", 15
"tz": "America/Los_Angeles", "sourceairport": "LHR",
"geo": "stops": O,
{ "type": "route"
"Tat": 37.618972, }
"Ton": -122.374889,
"alt": 13
3

}

Prepared statements

* Optimise frequently-run queries
* Execution plan happens once, query is run multiple times

2. cbg

Creating indexes e

Indexes

CREATE INC o
ON trave
WHERE typ

default 127.0.0.1:8091 #primary Ready 100%

travel-sample 127.0.0.1:8091 def_airportname Ready 100%

el-sample 127.0.0.1:8091 100%
el-sample 127.0.0.1:8091 def_faa 100%
USING GST;

, ravel-sample 127.0.0.1:8091 def_icao 100%
sample 127.0.0.1:8091 def_name_type 100%
travel-sample 127.0.0.1:8091 def_primary Ready 100%
ravel-sample 127.0.0.1:8091 def_sourceairport 100%

travel-sample 127.0.0.1:8091 def_type

travel-sample 127.0.0.1:8091

Definition:

Mutating data (s

 DELETE: provide the key to delete the document

e INSERT: provide a key and some JSON to create a new document
* UPSERT: as INSERT but will overwrite existing docs

 UPDATE: change individual values inside existing docs

Recapping NoSQL speed

Speed and NoSQL (-

Data model considerations Architecture considerations

Key-value No CPU load, Master-slave Speeds up reads,
minimal disk seeks slows writes
Document Largely single ops, Master-master Speeds up reads
minimal disk seeks, replicated and writes (with
often relatively consistency lag)
simple query Master-master Speeds up reads
Column Rapid writes distributed and writes
Graph Simplifies
otherwise

expensive queries

Recapping NoSQL scale

Scale and NoSQL @

Data model considerations Architecture considerations

Key-value Each item is Master-slave Speeds up reads,
independent, easily slows writes
distributed

_ Master-master Speeds up reads

Document ltem independence, replicated and writes (with

easily distributed.

Indexes might bring consistency lag)

cross-node Master-master Speeds up reads

dependencies. distributed and writes
Column Distribute column

families, hashed

sharding

Graph Shard based on data

Scale out, scale up or both: multi-dimensional scaling

nodei node8

Index Service

Query Service

node8 nodeg

I Query Service I . IndexService @

Data Service

Next steps

What next?

= Developer portal: developer.couchbase.con

" Forums: forums.couchbase.com

= Free online training: training.couchbase.com/online

= Join your local Couchbase meet-up: bit.ly/couchbasemeetups

Follow the Couchbase developer community on Twitter:
@couchbasedev

=

Thank you

Q&A

