800,000,000 events/day

@

SCHIBSTED
Lars Marius Garshol, lars.marius.garshol@schibsted.com MEDIA GROUP
http://twitter.com/larsga

2017-02-08, JFokus 2017

- i
= !

o

SCHIBSTED
MEDIA GROUP

Schibsted?
Collecting events?
Why"?

MEDIA GROUP

Schibsted E

- >

>~ v
2X0®" 0) \

a

MEDIAHOUSES

Hftenpofien
A4 =]

AELUN B LA Exl

SVD

etc...

Three parts

MARKETPLACES
_FINe

bl&cket...

leboncoin
vidie Ssubito

DoneDeal.ie

eeeeeeeeee

etc...

o

SCHIBSTED
MEDIA GROUP

GROWTH

¢ Compricer

(©) Prisjakt @

Lendo

Tripwell 1|

23 Shpock

etc...

Tinius A4

MEDIA GROUP

Restructuring

N7 | subita.. leboncoin

END AFFLADET
PRODUCTS Sienpofien

Bergens L34 Tidende
Stavanger Aftenblad
Tedrelandsvennen

blecket... vidie teria
ILLHABEN. AT® EOO segundamano.mx

2.MARKETPLACES
PLATFORMS

3. ADVERTISING

IDENTITY
PAYMENT

COMPONENTS

ENABLING
TECHNOLOGIES

@

SCHIBSTED
MEDIA GROUP

FUTURE POTENTIAL PRODUCTS

SCHIBSTED POTENTIAL NEW PLATFORMS

EXPERIMENTATION
FRAUD

User data is central =4

MEDIA GROUP
FEATURES FEATURES FEATURES s
O O
Stage 0: Stage 1: Stage 2:
. . , . Stage 3:
Silos of Sums of Enriched Selngeinforcing

User Data User Data User Data User Data

Event collection E

MEDIA GROUP

e Event collection pipeline exists to enable strategy

e Collect information on user behaviour

* across all web properties

* Useto
e target ads
e improve products
* make recommendations

e understand users

Events/day e

MEDIA GROUP

Kinesis records written (pri & sec) ~ Show| 2mo Nov 25, 12:00AM - Jan 25, 11:59PM v | [« | 11 | » X
000M
Xmas Eve New year
900M V W
850M
800M
750M
700M
650M
600M l
550M
500M
450M
400M
350M
300M
250M
200M
150M
100M
50M

on B I I U S S S S O O S S S S S S S S I O O D S O S A A e

Nov 27 Dec 04 Dec 11 Dec 18 Dec 25 2017 Jan 08 Jan 15 Jan 22
. 269.27M Avg: 709.08M spt.data.collector.primary.kinesis.record_written {spt-data-analytics-pro}
. 0.0097M Avg: 0.15M spt.data.collector.secondary.kinesis.record_written {spt-data-analytics-pro}

Helicopter crash E

MEDIA GROUP

Requests + 200 OK show| 2h Apr29, 11:07AM - Apr29, 1:08PM v | [« |11 | » X

2.4M

2.2M

2M

1.8M

1.6M

1.4M

M

0.8M

0.6M

0.4M

oM

11:15 11:30 11:45 12:00 12:15 12:30 12:45 13:00

10

Reelingen, 1960. Photo by Per Solrud

nNe

Jols

Thep

Architecture E

\

weos
CRC - RS
=@)i
o
e0-
Collector} — [Kinesi }
.
/

EEEEEEEEE

Complications =4

MEDIA GROUP

' [CIS _.
Steps:
1. Start batching events
| 2. GetID from CIS
3. If opt out, stop
Collector 4. Send events

13

Storage

The second step writes events into S3 as JSON

S3: AWS storage system
« kind of like a file system over HTTP

You can write to s3://bucket/path/to/file
» files are blobs
* have to write entire file when writing, no random access

e eventually consistent

Very strong guarantee on durability

* but substantial latency

@

SCHIBSTED
MEDIA GROUP

14

Why not S3 directly”

o Writing to S3 takes ~2-4 seconds

* along time to wait before the events are safe
* Reading takes a while, too

* Not good for “realtime” usages

e of which we have a few

o

SCHIBSTED
MEDIA GROUP

15

SCHIBSTED
MEDIA GROUP

Storage E

« Each event ~2200 bytes of JSON = ~1760 GB/day

* this turns out to be very slow to load in Spark

e Switched over to using batch jobs coalescing
JSON into Parguet

e some difficulties with nested -> flat structure
* unpredictable schema variations from site to site

* huge performance gain

16

Consumers g

Anonymized
[Batch }<
|dentifiable

MEDIA GROUP

Ad targeting
Personalization

User modelling
Business intelligence
Individual sites

Schibsted internal CMS

17

adinaZon
web services™

Working in the cloud

Amazon web servicesg

MEDIA GROUP

For each application, build a Linux image (AMI)

Set up an auto-scaling group
* define min and max number of nodes

* define rules to scale up/down based on metrics (CPU, ...)

Amazon ELB in front

e talks to health check endpoint on each node

Also provides Kinesis, S3, ...

19

eu-west- 1 (v Logged in as lars.marius.garshol@schibs

A* ISGARD data-pro ‘regF

Manage Cluster of Sequential Auto Scaling Groups

‘{%} Prepare Automated Deployment

Recommended next step:
Create a new group and switch traffic to it

= datacollector2-v059 Create Next Group: 4¢ Advanced Options
) _ datacollector2-v060
lSl Resize to 7 min / 30 max
ﬁ Delete ' Disable l Enable Instancg Min: 7 Max: 30
Bounds:
8 instances grouped by state Desired .
group 4 Capacity: 8 instances ©

Count State Build ELB Eureka

AMI Image ID: ‘ 469919918414/datacollector2 14642... | v

4k 1 Pending [[ljami-a549d8de N/A

&7 Insenice @ami-a549d8d6 5i§ VA After launch: Wait for Eureka health check pass

-{}- Create Next Group datacollector2-v060

Scaling policies k=4

MEDIA GROUP

Scaling Policies

Total Policies: 3 4P Create New Scaling Policy

Scaling Adjustment

Policy Name .
Adjustment Type

Cooldown Alarms

@ datacollector2-v059-537 -1 ChangelnCapacity 600 Zﬂ; CPUUtilization < 20.0
& datacollector2-v059-538 1 ChangelnCapacity 300 /A cpuutilization >= 65.0
@ datacollector2-v059-539 15 ExactCapacity 600 Zj_\ HealthyHostCount < 4.0

21

Metrics

Queue size (pri & sec & spillover) s &
150
100
50
0 I T I I
18:00 Thu 31 06:00 12:00
Memory used, cached, buffered s

T T T T
18:00 Thu 31 06:00 12:00

ELB surge queue length s
600
400
200 |
i | T | | |
18:00 Thu 31 06:00 12:00

@

SCHIBSTED

Number of instances s B
15
10
5
0 A| A A A T T T A_
18:00 Thu 31 06:00 12:00
Status 400 s
500
400
300
200
100
0 T T T T
18:00 Thu 31 06:00 12:00
Temporary Kinesis failures &S B
T T T T
18:00 Thu 31 06:00 12:00

22

Monitors A4

MEDIA GROUP

[Event Collector] Missing events ‘ Edit H Status \

3 since EXTEIENTT) (15 Mar, 10:35:00) Created by: @ o | %

avg(last_5m) :max:spt.data.probe.pct_missing.10min{spt-data-analytics-pro} > 2

More than {{threshold}} percent of events are missing after 10 minutes. Latency might be over 10 minutes, or there may be a problem with
the data collector, storage, or piper2. You will need to investigate several dashboards to find the cause. @slack-spt-tracking-health

v Monitor History ered Groups

Show History over spt-data-analytics-pro [1m The Past Month v] \Tﬁ » \E’
Original Data
10 Monitor View
5
>2
0 T A 1 AA"‘ T I
Mar 06 Mar 13 Mar 20 Mar 27
GROUP VALUES UPTIME

sp-daa-anaiyics..] 00 3%

Thu 03 Sat 05 Mon 07Wed 09 Frl 11 Mar 13Tue 15Thu 17 Sat 19 Mon 21Wed 23 Fri 25 Mar 27Tue 29

. Alert . OK . No Data Warn ggg Silenced
23

Probe

@

MEDIA GROUP
Collector response time (in seconds) # ¥ Request exceptions and errors & B
0.04
0.03
0.02
0.01
0 T T T T T T T T
8:15 08:30 08:45 09:00 8:15 08:30 08:45 09:00
Percentage missing (30sec, Tmin, 10min, Thour) s & Latency (max, in seconds) s B
0.5 40
0.4 30
0.3 i
20
0.2
0.1 10
0 I I I I 0 T T T T
8:15 08:30 08:45 09:00 8:15 08:30 08:45 09:00
Duplicates ¢ ¥ Probe events in storage & B
80
1
60
40
0.5 L
20
0 T T T T 0 T T T T 24
18:15 08:30 08:45 09:00 18:15 08:30 08:45 09:00

Requests + 200 OK

30M
20M
10M

oM
18:00 Wed 30

Kinesis records written (pri & sec)

15M

oM f

06:00

s

12:00

5xx errors

2K

Kinesis record fails (pri & sec) s

I T T T
18:00 Wed 30 06:00 12:00

data_collector_v2.response.time (avg & max & 95% ... s
60
40
20
0 T - T T T
18:00 Wed 30 06:00 12:00
5XX Codes from backend s
T T T T
18:00 Wed 30 06:00 12:00

Data collector

Overview

e \ulnerable

e data not yet persisted
e can't expect clients to resend if collector fails
 traffic comes with sudden spikes

* A very thin layer in front of Kinesis

e persist the data as quickly as possible

e we can work on the data later, once it’'s stored

* Use Kinesis because it has very low write latency

e generally <100 ms

@

SCHIBSTED
MEDIA GROUP

26

KINESIS E

M

MEDIA GROUP
Endpoint

Apache Kafka

A high-throughput distributed messaging system. 27

Basics A4

MEDIA GROUP

e Scala application
» Based on Netty/Finagle/Finatra

e Framework scales very well

* if app is overloaded, the only thing that happens is number
of open connections piles up

* eventually hits max open files, causing failures

28

Time spent |

First design

@

SCHIBSTED
MEDIA GROUP

/

here!

_

v

parse JSON

|

validate

|

insert fields

Kinesis PUT

send response

A

» wait

N

{

Kinesis

29

First version A4

MEDIA GROUP

l)

parse JSON send response
l A
validate

|

insert fields — queue JSON

et queue
SN

Kinesis PUT » wait

N

Kinesis

30

Error handling? k=4

MEDIA GROUP

* | had no experience with AWS - didn’t know what to expect
» could Kinesis go down for 1 minute” 1 hour? 1 day?

e anecdotal reports of single nodes being unable to contact Kinesis
while others working fine

* Considered
« batching on disk with fallback to S3

« feeding batched events back to collector

* In the end decided to wait for more experience

31

Ooops!

@

SCHIBSTED
MEDIA GROUP
Max of spt.data.collector.kinesis.request_time over ... s &
20K
15K
10K - | "
XX
5K \ | :
/ } b
0K — Eam— | — ~ I/ —— b I . -
11:12 11:13 11:14 11:15 11:16 11:17 11:18 11:19

32

80K

60K

40K

20K

OK

Queue grows

@

SCHIBSTED
MEDIA GROUP
: \J
Batch & queue size s L
| | | | | | | |
11:12 11:13 11:14 11:15 11:16 11:17 11:18 11:19

33

Kaboom A4

MEDIA GROUP

Requests + 200 OK s

IM
0.8M
0.6M
0.4M
0.2M

OM = ‘ J]
1:15 11:30 11:45 12:00

34

GC eats the CPU s

MEDIA GROUP

CPU s
80
60

40 .

20

| | 1 l ' 1 ' l I | ' |
11:12 11:13 11:14 11:15 11:16 11:17 11:18 11:19

35

Fallure to recover E

MEDIA GROUP

5XX errors &

1M
0.5M

oM — . .
.1:15 11:30 11:45 12:00

36

X Confluence

U015-10-15: Da
2015-10-26 S3 |
2015-10-28: CIS
2015-11-27 - [Ds
2015-11-30 data
2015-12-03 Eve
2015-12-16 - [S(
2016-01-06 Dat:
2016-01-13 Pipe
2016-01-29 Net
2016-02-12 Pipe
2016-02-22 CIS
2016-02-29 CIS

2016-03-02 EMF

2016-03-08: Wri
2016-03-14 prot
2016-03-14 Stra
2016-03-15 sma
2016-03-16 Kine
2016-03-19 201!
2016-04-13 CIS
2016-04-28 Kine
2016-05-05 CIS
2016-05-07 Pipe

™ Chare tnnle < P4

Calendars Create

Spaces ~

People

Edit © Watch [2 Share

Pages /... / Incident report @

2016-01-06 Data collector outage

Created by Lars Marius Garshol, last modified on Feb 04, 2016

Summary

The data collector was partially unresponsive for about 40 minutes, causing about 12 million records to be lost. The cause was a temporary
increase in Kinesis write latency.

Background

In order to understand the incident it's helpful to have a minimal understanding of the data collector internals.

Incoming data collector requests have their JSON parsed and two fields inserted. The JSON object is then added to a list (a buffer), and
the request is responded to.

A background thread takes the list (and replaces it with an empty one), then converts the list to Kinesis records and writes it to Kinesis.
Once Kinesis responds satisfactorily, the thread repeats, without sleeping.

High-level timeline

The detailed timeline is quite complex, so we start with a timeline focusing only on the most important events.

December 14, 2015

The data-collector AMI is built and deployed. It runs unchanged in production from this point on.

January 5, 2015

Auto-scaling group scaling policy is changed to scale down when the CPU usage is 20%, instead of the previous 15%.

January 6, 2015

» 11:14 Kinesis request latencies spike dramatically, and events start queueing up within the nodes.

Redesign A 4

MEDIA GROUP
Kinesis Kinesis
Ireland Frankfurt

fixed-size queue

Aorver fixed-size queue

Event- Converter-

Processor Thread KinesisWriter KinesisWriter

PixelTracker

extend JSON serialize JSON

Spillover-
request thread Queue

temp storage
38

Latency spike! Kea

MEDIA GROUP

Primary queue size by host &S ¥
6K

4K

2K

0K

T I)
23:55 Wed 30

Primary request time by host &
40K

30K
20K

10K

0K |
23:55

’ I
00:10 00:15 39

No increase in CPU =4

CPU utilization
80

60

40

MEDIA GROUP
&

Scale down

Open files (max & actual)
10K

8K

6K

4K

2K

0K

1 1 1
23:55 Wed 30 00:05

I T T
00:10 00:15

40

Frankfurt saves the day

Secondary queue size by host & &
200

150

100
50

N A

) ‘ - I
23:55 Wed 30 00:05 00:10 00:15

Secondary request time & &
400

300
200
100

0

|
23:55

SCHIBSTED

MEDIA GROUP

41

S N,

Network out

age

o

SCHIBSTED
MEDIA GROUP

42

Network out is slow =4

Primary request time by host

200K

& L

150K A
100K _
50K | &
OK — , i\\[bx | TL\,.A_[\}

)1:15 01!30 01:45 02:00
Secondary request time
400K
300K
200K

100K

P A

T
02:15

s &

T 1 T 1
)1:15 01:30 01:45 02:00

T
02:15

MEDIA GROUP

43

Events spill to disk E

MEDIA GROUP
Spillover queue size by host s &
40K
30K

20K /
10K /
OK , - y l

| | I | I
)1:15 01:30 01:45 02:00 02:15

44

Application survives -4

MEDIA GROUP

Requests + 200 OK & &
500K

400K
300K
200K
100K

0K
01:30 02:00 02:30 03:00

Kinesis records written (pri & sec) s &
800K

600K — —— —— ——— SN RN RN R R R R R R R R R R R R R R R R N
400K s § RERERRRRRRRRRRRRRRRRRRRRRRRRRRRRRR]
200K BEnmsens — RERER RRRRR

oK —
01:30 02:00 02:30 03:00

45

Disk usage E

MEDIA GROUP

Free disk s &
4
2
0

01:30 02:00 02:30 03:00

46

More rework A4

MEDIA GROUP

|t turned out that it was still possible for the two
Kinesises to be too slow

more records would come in than we could write out
events spilling to disk, high latency
set off alarms and violate SLAs

solution: four writers, to two streams

* Networking issues causing absurd write latency

writes taking several minutes

solution: set a timeout of 15 seconds
47

Nov 11 non-incident k=4

MEDIA GROUP
Primary queue size by host s ¥ Tertiary queue size (by host) & ¥
6K 6K
[
4K | 4K it | fl
r‘ |
2K - | 2K i |
[‘ L
e _‘i‘ﬁ;“:‘;‘,ﬁA& J&IA -K‘.‘»A‘Jﬁ’;&;} y ;}‘-AI'J”;/, A 0K | Aﬂ' \ IJ) L‘ ! |
18:00 19:00 20:00 18:00 19:00 20:00
Secondary queue size by host & & Quaternary queue s &
6K
2K
4K 1.5K
1K
2K
. 0.5K
0K / \‘4{]\ 0K | A A | é,w IAQ_A_‘A ’_\ |
18:00 18:00 19:00 20:00
Spillover queue size by host & &
18§00 19200 20:00 48

Design flaws =4

MEDIA GROUP

* Collector shouldn’t parse the JSON

e this is a waste of CPU resources

* Collector should just pack JSON plus extra fields into
some efficient serialization (Avro? Thrift? ...)

 then write to Kinesis

e perhaps also gzip the data

e Let |later stages deal with the tidying up

e not done yet, because requires changes to several components
e Quite possibly also a custom Spark reader

49

Storage
(i) (oo)~ (8

e Very simple application

e data in Kinesis lives 24 hours

* therefore want something simple and fool-proof

e Stores all the data to S3

* does nothing else

e uses Kinesis Client Library (KCL) to read from Kinesis

@

SCHIBSTED
MEDIA GROUP

51

Kinesis read limits ¥

 KCL can give us max 10,000 records per read

 put It never does

e even if the stream contains many more records

e Experiment
» write lots of 80-byte records into a test stream
* then add lots of 2000-byte records

e read the stream with KCL, observe results

@

CHIBSTED
MEDIA GROUP

52

Result >

SCHIBSTED
MEDIA GROUP

Wrote 10000 records (815960 bytes) in 2409 ms, 4 records/ms
Wrote 10000 records (816980 bytes) in 790 ms, 12 records/ms
Wrote 10000 records (816270 bytes) in 750 ms, 13 records/ms
Wrote 10000 records (817690 bytes) in 742 ms, 13 records/ms
Wrote 10000 records (817990 bytes) in 929 ms, 10 records/ms
Wrote 10000 records (817990 bytes) in 798 ms, 12 records/ms
Wrote 10000 records (819000 bytes) in 720 ms, 13 records/ms
Wrote 10000 records (816980 bytes) in 724 ms, 13 records/ms
Wrote 10000 records (817990 bytes) in 833 ms, 12 records/ms
Wrote 10000 records (818080 bytes) in 726 ms, 13 records/ms
Wrote 10000 records (818000 bytes) in 730 ms, 13 records/ms
Wrote 10000 records (818180 bytes) in 721 ms, 13 records/ms
Wrote 9535 records (6176176 bytes) in 2432 ms, 3 records/ms
Wrote 3309 records)
Wrote 3309 records)
Wrote 3309 records)
Wrote 3310 records)
Wrote 3309 records)
Wrote 3309 records)

6934426 bytes) in 1991 ms, 1 records/ms
6933172 bytes) in 1578 ms, 2 records/ms
6934878 bytes) in 1667 ms, 1 records/ms
6934916 bytes) in 1599 ms, 2 records/ms
6934319 bytes) in 1614 ms, 2 records/ms
6933975 bytes) in 2054 ms, 1 records/ms

A~ A~ A~ o~ o~ o~

— Bigger records =
fewer per batch

53

Falling behind k=4

MEDIA GROUP

spt.data.storage.ms_behind_tip & ¥

200K
180K
160K
140K
120K
100K
80K
60K
40K
20K

0K T o -,

[I ! I

I I I
15:00 18:00 21:00 Sat 24 03:00 06:00 09:00 12:00

. 32.24K Avg: 30.93K spt.data.storage.ms_behind_tip {kinesis-storage-app,spt-infrastructure-pro}

54

The relevant knob =

MEDIA GROUP

KCL has a setting for sleep between reads

Used to have this at 10,000 ms

* this in order to not get so many small JSON files

 these are slow to read back out of S3

As a result of this investigation, reduced to 5000ms

e much later, reduced further to 3000ms

Another knob is the number of shards

55

Results A

MEDIA GROUP

New setting deployed

spt.data.storage.ms_behind_tip & &
1.2M

1M
0.8M

0.6M

kinesis-storage-app, spt-infrastructure-pro

0.4M oM
0.2M
OM T T | | I | | |
18:00 Thu 05 06:00 12:00 18:00 Fri 06 06:00 12:00
. oM Avg: 0.07M spt.data.storage.ms_behind_tip {kinesis-storage-app, spt-infrastructure-pro}

56

SAPACHE&

oark

* Analytics jobs are written in Apache Spark

* much easier to write code for than Hadoop
* also more efficient
» Used to be deployed on separate clusters
* this was very expensive
* now switching over to a shared cluster

* this is somewhat painful, as we're still learning

@

SCHIBSTED
MEDIA GROUP

58

Spark E> 4

MEDIA GROUP

val conf = new SparkConf().setAppName("basestats")
val sc = new SparkContext(conf)

try {
implicit val sglContext = new SQLContext(sc)
val df = sqlContext.read.parquet(args(0))
df.select("provider.@id")
.map(id => (id, 1))
.reduceByKey((a, b) => a + b)
.saveAsTextFile(args(1))
} finally {
sc.stop()
¥

59

Storage
output

Dependencies

Anon

@}

ldent

d

emux

/]

Site 1

Site 2

Site 3

o

SCHIBSTED
MEDIA GROUP

60

o

SCHIBSTED
MEDIA GROUP

(U9t

* A job scheduler developed by Spotify

* use Python code to declare parameters, dependencies,
and outputs

* Luigi will schedule jobs accordingly

» |ocking to ensure only one of each job running at a time

e Python code also for actually starting the job

* many ready-made wrappers for known job types

61

this is our actual description
class BaseStatsTask(luigi.contrib.spark.SparkSubmitTask):
date = luigi.DateParameter(default = yesterday())

for SparkSubmitTask b ‘

entry_class = 'com.schibsted.spt.data.helpers.coalesce.BaseStats' 1IBSTED
IIA GROUP

the jar file is in 'basestats—x.x.xx/jars/coalescer.jar', so we need

to compute that path

thepath = glob.glob('basestats—*/jars/coalescer.jar') /\ [_LJiQJi
assert len(thepath) ==
app = os.path.abspath(thepath[0]) taSk

def requires(self):
we need the anonymized events for each hour of the day
return [AnonymizeEvents(self.date, hour) for hour in range(0, 24)]

def output(self):
return s3.S3FlagTarget(self._make_target_path(), client = client)

we assume SparkSubmitTask already implements run

def app_options(self):
where we translate the Luigi parameters into the actual command-line
parameters of the job. a task that Luigi quite frankly ought to do
for us...
return [make_input_date_path(self.date), self._make_target_path()]

def _make_target_path(self):
return ('s3://schibsted-spt-common-dev/lmg/basestats/'+
make_date_suffix(self.date))

L uigi issues K4

MEDIA GROUP

e No cron-like functionality

* has to be handled by other means (like cron)

* Single master only

e uses file locking on disk to prevent simultaneous execution
of tasks

* No resource planning
it has no idea what resources are available

* cannot queue jobs waiting for resources

63

KNOX E

SCHIBSTED
MEDIA GROUP

Schibsted internal tool for working with data
knox job deploy: deploy job in cluster

knox job status: what's the status of my job?
knox job Kill: stop running job

knox job disable: don't run this job again

knox job list: what jobs exist?

64

Cluster architecture E

‘ knox \

Crane

MEDIA GROUP

Mesos cluster

(
ores |

~

—

e

&Ob #1

j

//

Luigi
server

[

Spark

~

master

[

node

N

[

Spark
node

)

Spark Spark
node node .

Apps Running im

29.00...

Top cluster usage by App last hour 1h Running containers

1.75T event_anonymization
0.75T com.schibsted.data.userprofiling.ageperformanceevalua...

0.73T com.schibsted.data.userprofiling.genderperformanceeva.. 200
0.61T event_demuxer

0.38T com.schibsted.data.userprofiling.genderpredictormodel
0.29T com.schibsted.data.userprofiling.agepredictormodel 100 ———
0.26T spark_shell

Apps Queued Tm

0.17T com.schibsted.data.userprofiling.eventfeaturizer "\
0.09T com.schibsted.data.userprofiling.interestpredictormodel 0 T T T 1 2 00
14:15 14:30 14:45
0.04T pysparkshell ° tasks
Apps queued 1h Memory Allocated (GB)
15 4T

Running contai... 1m

: o —————t] 324

’ 0T T T T i 10m
oM —h r— 14:15 14:30 14:45 Max Elapsed Ti...

T T T T
14:15 14:30 14:45 15:00

Average cluster cpu usage 1h Allocated vCores 26 7 M
100
200 : : 1h
MW pety T T Applicaton suc..
) o o i 8.89K
° tasks
"\
0 T T T T 0 T T T T
14:15 14:30 14:45 15:00 14:15 14:30 14:45 15:00
Application Failed 1h
Network 1h System total mem vs used memory vs allocated memory 1h
24 6T 1 4. 00 tasks
‘ —_—_— -9 4 -
16 4T
i 5
g - Usage (5 min) m

° ; 1.00

Reserved memory by app 1h

New requirements E

MEDIA GROUP

* Receive backend events from other applications

* new ad, ad updated, ...

e Can’t lose events

* want to be able to tie business logic to them

e Must confirm event written to Kinesis with 200 OK

e these clients can resend

68

MEDIA GROUP

Remember this? =

a M
v
parse JSON send response
l A
validate
insert fields
Kinesis PUT » wait
_ _J
Kinesis

69

Throttling A4

MEDIA GROUP

try {
openRequests++
1f (openRequests > MAX SIMULTANEOUS REQUESTS)
response.status (509)
else 1f (kinesis.sendToKinesis (request.content))
response.status (200)
else
response.status (500)
} finally {
openRequests—-—

openRequests never bigger than 2...

70

What's going on? E=4

MEDIA GROUP

* Worker-based web servers
« allocate a fixed number of worker threads/processes

e each worker picks one request, finishes processing that, then
picks the next request

* have enough that while some may block on 1/O there are
always some threads making progress

e Event-based web servers
e small number of worker threads

* use polling interfaces to multiplex between connections

* less context switching => more efficient

71

Finatra A4

MEDIA GROUP

e Event-based framework
* response.status(200) doesn’t return a Response

e it returns Future[Response] that’s already populated

 This means, if we're blocked we can return a
Future[|Response] that completes when we're done

* allows Finatra to continue on another request that's not
blocked

72

Canonical solution E

MEDIA GROUP

| Finatra ThreadPool
| populate
get Future | «— Future
\ pick task
process JSON N /
a/v
\ — send put
hand off task

LT
-

/3

Weaknesses E

MEDIA GROUP

e Every event is a separate request to Kinesis

* very inefficient

* Now suddenly we have a lot of threads again

* back to the context-switching we were supposed to avoid

e Hard, low limit on the number of simultaneous
requests

 |imit = number of threads

74

What's a Future?

public interface Future<V> {
public boolean isDone()

// true iff the value is there, false otherwise

public V get()
// loop until the value is there, then return it

// it computing the value failed, throw the exception

@

SCHIBSTED
MEDIA GROUP

75

Redesign r> 4

MEDIA GROUP

ApiVer1

fixed-size queue fixed-size queue

Event- Converter-

Processor Thread KinesisWriter KinesisWriter

PixelTracker

extend JSON serialize JSON

Spillover-
request thread Queue

Add event with callback temp storage
Callback inserts Response into Future

SyncEndpt

/6

Inside Kinesis\Writer

Event Future
JSON

JSON

JSON Callback
JSON

JSON

JSON

JSON

JSON Callback
JSON

o

SCHIBSTED
MEDIA GROUP

77

Actual code A4

MEDIA GROUP

val promise = new Promise[Response]
kinesis.add (request.contentString.getBytes ("utf-8"),
// the writer will call this function with the outcome, which
// causes Finatra to send the response to the client
(success : Boolean) => if (success)
promise.setValue (response.status (200))
else
promise.setValue (response.status (509))

)

promise

/8

Benefits

Number of threads is kept minimal

* not all that context-switching
Hard limit on requests is much higher (5000)
No extra moving parts

Synchronous requests sent together with other
requests

e much more efficient

* much simpler

o

SCHIBSTED
MEDIA GROUP

79

Conclusion

« Schibsted Tech is still only just getting started
* the basics now in place
 starting to generate money
e alot more work to do
* Use of AWS saves us from a lot of hassle
* Working at this scale
* causes different challenges from what I'm used to

 alot more error handling/retries/scaling

@

SCHIBSTED
MEDIA GROUP

81

SCHIBSTED
& 4 MEDIAGROUP

Back-End Software Engineer
OSLO ENGINEERING FULL-TIME

Back-End Software Engineer
LONDON ENGINEERING FULL-TIME

Back-End Software Engineer
BARCELONA ENGINEERING FULL-TIME

CIO

OSLO, STOCKHOLM, LONDON, BARCELONA ENGINEERING FULL-TIME

Data Scientist

BARCELONA ENGINEERING FULL-TIME

Data Scientist

STOCKHOLM ENGINEERING FULL-TIME

Data Scientist

LONDON ENGINEERING FULL-TIME

Developer Relations Lead (Infrastructure)
BARCELONA ENGINEERING FULL-TIME

DevOps Engineer

LONDON ENGINEERING FULL-TIME

APPLY
APPLY

APPLY
APPLY
APPLY
APPLY
APPLY

APPLY

APPLY

o

SCHIBSTED
MEDIA GROUP

