
Deceived by monitoring
Nikita Salnikov-Tarnovski

@iNikem



Me

• Nikita Salnikov-Tarnovski, @iNikem
• Java developer for 16 years
• 7 years mainly performance problems solving
•Master Developer at Plumbr



What is monitoring

“monitoring and management of performance and 
availability of software applications [with the goal] to detect 
and diagnose complex application performance problems 
to maintain an expected level of service”. 

Wikipedia



Huh, WAT?

• Observe the state of the system
• Understand is it “good” or “bad”
• If “bad” make it “good”

•Make it “better” in the future



Easy Metrics

• CPU usage is 90%
• Free disk space is 34GB
• There is 2M active users on site
• Average response time for application X is 1s
• During last 24h we had 578 errors in our logs
•We have 7 servers died in last 4 hours



Problems

• Lack of context
•Misaligned goals



Goals of the application

• The goal is not to use X% of CPU
• And not to keep disk mostly empty
• And even not to be fast



Real goal

• Satisfy customer’s need
•Meet business goals



Real metrics

• You have to observe application from the point of view of 
your users
• Can they achieve their goal?



The simplest useful monitoring

• Observe real user’s interactions with your application
• Note failed interactions
• Record response times



The biggest fallacy

“Average response time is an useful metric”



Anscombe's quartet

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9838454

https://commons.wikimedia.org/w/index.php?curid=9838454


Percentiles

Most page loads will experience the 99%’lie server 
response

Gil Tene, How NOT to measure latency



Percentiles

Q: How many of your users will experience at least one 
response that is longer than the 99.99%’lie?

A: 18%

Gil Tene, How NOT to measure latency



Percentiles

• Always record your maximum value
• Forget about median/average
• Follow your 99%’lie or higher
• Plot them on logarithmic scale





Dichotomy of metrics

• Are users happy with your application? - direct metric
•Great for alerts and health assessment

• CPU/disk usage/errors in logs - indirect metrics
•Great for debugging and alert prevention



That was about fixing

•What about improving?



Planning performance

• Compete with actual business feature
• Know when to stop



This or that?

• You have to explain to your manager why performance/
resilience is important
• Use your user happiness metric as a proxy



Not all requests are equal

• Group requests by consumed service and initiated user



Suits and beards

• Let business people decide which services and which 
users are more important
• Then you don’t need to prove the importance of any 

performance fix any more :)



Suits and beards

• And you have a perfect priority for improvements
• That actually makes sense to your manager!



When you talk to a suit

• “How many operations can fail”
• “Are you stupid? Of course 0!”

• “How much time can the system be down”
• “Are you kidding me? No downtime!”

• “How fast must operations be”
• “What a question is this? As fast as possible!”



Now you have a price tag

• “This errors happens twice a week for 1 user. Should I 
spend 2 days fixing it?”
• “Can we have 15 minutes downtime every Sunday 3AM 

when we have 0 users?”
• “Should I spend 100K to move 99.99% latency from 

800ms to 500ms?”



Conclusion

• Technical metrics are so indirect they are almost harmful
• User “happiness" is the common ground between 

engineers and managers



 

Solving performance problems is hard. 
We don’t think it needs to be.

@JavaPlumbr/@iNikem
http://plumbr.eu

http://plumbr.eu

