
Rust intro
(for Java Developers)

JFokus 2017 - #jfokus

1 . 1

Hi!
Computer Engineer
Programming
Electronics
Math <3 <3
Physics
Lego
Meetups
Animals
Coffee
Pokémon
GIFs

#jfokus @hannelita

OSS Projects:

https://github.com/hannelita/neo4j-cassandra-

connector

https://github.com/hannelita/neo4j_doc_manager

1 . 2

Disclaimer

This is a session about Rust
Features :)

1 . 3

Disclaimer
This is not a Rust intro tutorial

Some theory

Some subjects that may
cause discussion. Views are

on my own.

GIFs :)
1 . 4

Disclaimer
There are some references for

introductory Rust Content

Language peace <3

1 . 5

Agenda
What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

#jfokus @hannelita
1 . 6

What is Rust?

#jfokus @hannelita

'Rust is a general purpose programming
language, compiled, strong and static typed,
sponsored by Mozilla Research. It is designed
to be a "safe, concurrent, practical language",

supporting functional and imperative-
procedural paradigms.'

https://en.wikipedia.org/wiki/Rust_(programming_language)#cite_note-FAQ_-_The_Rust_Project-10

1 . 7

Is it yet another language
that runs on top of the

JVM?

#jfokus @hannelita
1 . 8

No. Rust is not 'yet another
language that runs on top

of the JVM'.

#jfokus @hannelita
1 . 9

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 10

Embedded systems

#jfokus @hannelita

Sometimes they are so restrictive that you
can't use Java.

Which language do you choose?

Source - http://www.diva-portal.org/smash/get/diva2:215157/FULLTEXT01

1 . 11

C and C++

#jfokus @hannelita
1 . 12

C and C++

#jfokus @hannelita

It's hard to debug
It can be difficult to maintain the code
Manual memory allocation

It may be inconvenient.

1 . 13

What are we looking
for in terms of

language?

#jfokus @hannelita
1 . 14

Good choices

No manual memory management
Strong and Static Typed
Compiled
Fast
Reduce number of runtime errors
Active community
Good amount of frameworks and libraries
Open Source

#jfokus @hannelita
1 . 15

Meet Rust!

#jfokus @hannelita
1 . 16

Rust - features

Memory safe, data race free
A compiler that blocks lots of runtime errors
Interface with C/C++
Generics
Polymorphism
By Mozilla and an amazing community

#jfokus @hannelita
1 . 17

Rust - it meets the requirements

#jfokus @hannelita

No manual memory management √
Strong and Static Typed √
Compiled √
Fast √
Reduce number of runtime errors √
Active community √
Good amount of frameworks and libraries √
Open Source √

Bonus

About the same level of verbosity as Java :)
Rust Compiler is also verbose to explain the errors to
you

1 . 18

More about Rust
No VM
No GC
No manual malloc/free
No seg faults

#jfokus @hannelita
1 . 19

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 20

Quick view at Rust
fn main() {
 fizzbuzz_to(100);
}

fn is_divisible_by(lhs: u32, rhs: u32) -> bool {
 if rhs == 0 {
 return false;
 }
 lhs % rhs == 0
}

fn fizzbuzz(n: u32) -> () {
 if is_divisible_by(n, 15) {
 println!("fizzbuzz");
 } else if is_divisible_by(n, 3) {
 println!("fizz");
 } else if is_divisible_by(n, 5) {
 println!("buzz");
 } else {
 println!("{}", n);
 }
}

fn fizzbuzz_to(n: u32) {
 for n in 1..n + 1 {
 fizzbuzz(n);
 }
}

source: http://rustbyexample.com/fn.html

Limited type
inference. Explicit

type declaration for
function parameters

and return.
(same as in Java)

Macros

1 . 21

Quick view at Rust

fn main() {
 let _immutable_binding = 1;
 let mut mutable_binding = 1;
 println!("Before mutation: {}", mutable_binding);
 // Ok
 mutable_binding += 1;
 println!("After mutation: {}", mutable_binding);

 // Error!
 _immutable_binding += 1;
 // FIXME ^ Comment out this line
}

source: http://rustbyexample.com/variable_bindings/mut.html

Immutability by
default

1 . 22

Quick view at Rust
fn is_odd(n: u32) -> bool {
 n % 2 == 1
}

fn main() {
 println!("Find the sum of all the squared odd numbers under 1000");
 let upper = 1000;
 let mut acc = 0;
 for n in 0.. {
 let n_squared = n * n;
 if n_squared >= upper {
 break;
 } else if is_odd(n_squared) {
 acc += n_squared;
 }
 }
 println!("imperative style: {}", acc);
 let sum_of_squared_odd_numbers: u32 =
 (0..).map(|n| n * n) // All natural numbers squared
 .take_while(|&n| n < upper) // Below upper limit
 .filter(|n| is_odd(*n)) // That are odd
 .fold(0, |sum, i| sum + i); // Sum them
 println!("functional style: {}", sum_of_squared_odd_numbers);
}

source: http://rustbyexample.com/fn/hof.html

High
Order

Functions

1 . 23

Other features -
Tuples, Enums,
Structs, Traits.

#jfokus @hannelita
1 . 24

Traits are similar to
Java 8 Interfaces

#jfokus @hannelita
1 . 25

#jfokus @hannelita
1 . 26

How do we achieve
the 'No Seg Faults'

feature?

#jfokus @hannelita
1 . 27

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 28

Variable bindings own the
values in Rust

fn foo() {
 let v = vec![1, 2, 3];
 let v2 = v;

 println!("v[0] is: {}", v[0]);
}

#jfokus @hannelita
1 . 29

Variable bindings own the
values in Rust

fn foo() {
 let v = vec![1, 2, 3];
 let v2 = v;

 println!("v[0] is: {}", v[0]);
}

Rust compiler says:"error: use of moved value: `v`
println!("v[0] is: {}", v[0]);"

1 . 30

What?

#jfokus @hannelita
1 . 31

It may sound unpractical,
but by having this model,

Rust prevents several
memory errors.

#jfokus @hannelita
1 . 32

Rust allows you to
share some

references with a
feature called

'borrowing'

#jfokus @hannelita
1 . 33

fn main() {
 fn sum_vec(v: &Vec<i32>) -> i32 {
 return v.iter().fold(0, |a, &b| a + b);
 }
 fn foo(v1: &Vec<i32>, v2: &Vec<i32>) -> i32 {
 let s1 = sum_vec(v1);
 let s2 = sum_vec(v2);
 s1 + s2
 }

 let v1 = vec![1, 2, 3];
 let v2 = vec![4, 5, 6];

 let answer = foo(&v1, &v2);
 println!("{}", answer);
}

Borrowing

&

#jfokus @hannelita
1 . 34

It is similar to Read-Writers
lock

Many readers at once OR a single writer with
exclusive access
Read only do not require exclusive access
Exclusive access do not allow other readers

(More info: https://users.cs.duke.edu/~chase/cps210-archive/slides/moresync6.pdf)

Rust uses a similar model at compile time.

1 . 35

It is similar to Read-Writers
lock

Many readers at once OR a single writer with
exclusive access
Read only do not require exclusive access
Exclusive access do not allow other readers

Rust uses a similar model at compile time.

T: Base type; owns a value
&T: Shared reader

&mut T: Exclusive writer

(Note: I am not considering another Rust feature called Copy)

1 . 36

It is similar to Read-Writers
lock

Many readers at once OR a single writer with
exclusive access
Read only do not require exclusive access
Exclusive access do not allow other readers

Rust uses a similar model at compile time.

T: Base type; owns a value
&T: Shared reader

&mut T: Exclusive writer

(Note: I am not considering another Rust feature called Copy)

Immutable reference
Mutable reference

1 . 37

About exclusive writers

fn main() {
 let mut x = 5;
 let y = &mut x;

 *y += 1;

 println!("{}", x);
}

Rust compiler says: "error: cannot borrow `x` as

immutable because it is also borrowed as mutable

println!("{}", x);"

1 . 38

Top issues that borrowing
prevents:
Iterator invalidation
Data race problems
Use after free

#jfokus @hannelita
1 . 39

BTW, how do I free a
variable in Rust?

Since there is no GC,
how should I clean

up the memory?

#jfokus @hannelita
1 . 40

Also, I could easily
mess up with

borrowing by freeing
a variable that I lent

to a function.

#jfokus @hannelita
1 . 41

#jfokus @hannelita
1 . 42

You don't have to
handle that

manually. At least,
not explicitly.

#jfokus @hannelita
1 . 43

#jfokus @hannelita
1 . 44

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 45

In Rust, every reference has some
lifetime associated with it.

fn lifetimes() {

 let a1 = vec![1, 2, 3]; // +
 let a2 = vec![4, 5, 6]; // + |
 // | |
 let b1 = &a1; // + | |
 let b2 = &a2; // + | | |
 foo(b1); // | | | |
 foo(b2); // 'b2 'b1 'a2 'a1
 // | | | |
}

#jfokus @hannelita
1 . 46

You can explicit lifetimes in
Rust

fn explicit_lifetime<'a>(x: &'a i32) {
}

Or even multiple lifetimes:
fn multiple_lifetimes<'a, 'b>(x: &'a str, y: &'b str) -> &'a str {
}

#jfokus @hannelita
1 . 47

By the end of a
lifetime, a variable is

free.

#jfokus @hannelita
1 . 48

GC is not necessary
Another mechanism to avoid dangling pointers
No manual malloc nor free

Top issues that lifetime
system prevents:

#jfokus @hannelita
1 . 49

Okay, so is Rust
always safe?

#jfokus @hannelita
1 . 50

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 51

Rust has a good
Generics resource,

with Traits and
Closures

http://huonw.github.io/blog/2015/05/finding-closure-in-rust/

#jfokus @hannelita
1 . 52

Comparison - Java
and Rust Features

#jfokus @hannelita
1 . 53

Classes

#jfokus @hannelita

public class MyClass {
 private in number = 42;
 private MyOtherClass c =
 new MyOtherClass();

 public int count() {
 ..
 }
}

struct MyClass {
 number: i32,
 other: MyOtherClass,
}

impl MyClass {
 fn myMethodCountHere(&self) -> i32 {
 ...
 }
}

Primitive types Primitive types

1 . 54

Interfaces

#jfokus @hannelita

public interface MyInterface {

 void someMethod();

 default void someDefault(String str){
 //implementation
 }

}

trait Animal {
 fn noise(&self) -> &'static str;
 fn talk(&self) {
 println!("I do not talk to humans");
 }
}

struct Horse { breed: &'static str }

impl Animal for Horse {
 fn noise(&self) -> &'static str {
 "neigh!"
 // I can't mimic horse sounds
 }

 fn talk(&self) {
 println!("{}!!!!", self.noise());
 }
}

impl Horse {
 fn move(&self) {
 //impl
 }
}

1 . 55

Generics

#jfokus @hannelita

public class MyGeneric<T> {
 //impl
}

public class NotGeneric {
 public static <T extends Comparable<T>> T maximum(T x, T y) {
 //awesome
 }
}

trait Traverse<I> {
 // methods
}

struct Bag<T> {
 //struct
}

impl<T> Bag<T> {
 //impl
}

1 . 56

Rust Generics

#jfokus @hannelita

fn general_method<T: MyTrait>(t: T) { ... }

fn general_method<T: MyTrait + AnotherTrait + SomeRandomTrait>(t: T)

(Trait bounds: use it for the good and for
the evil)

1 . 57

Quick mention

#jfokus @hannelita

Arrays Mutability

1 . 58

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 59

Rust is pretty safe
not only because of

borrowing and
lifetimes

#jfokus @hannelita
1 . 60

You can call C/C++
functions from Rust.

But C/C++ is not
safe.

#jfokus @hannelita
1 . 61

unsafe

fn main() {
 let u: &[u8] = &[49, 50, 51];

 unsafe {
 assert!(u == std::mem::transmute::<&str, &[u8]>("123"));
 }
}

#jfokus @hannelita
1 . 62

Explicit calls for
unsafe.

#jfokus @hannelita
1 . 63

So, is Rust perfect?

#jfokus @hannelita
1 . 64

Agenda

#jfokus @hannelita

What is Rust?
Why is Rust interesting?
Rust structure quick overview
Borrow
Lifetime
Feature Comparison
The sense of safety
Rust downsides

1 . 65

Top Rust complaints
Learning curve is not too fast
Lots of new concepts
Pretty new language

#jfokus @hannelita
1 . 66

Top Rust complaints
Learning curve is not too fast
Lots of new concepts
Pretty new language

Top Rust responses to
these problems

Great docs and learning resources
The community is active and willing to help
The community is building lots of tools and libraries

#jfokus @hannelita
1 . 67

Bonus #1:
How can you

describe Rust type
system?

#jfokus @hannelita
1 . 68

Answer: Somewhat static,
strongly typed. There is a
huge research project to

describe Rust type system

https://www.ralfj.de/blog/2015/10/12/formalizing-rust.html

#jfokus @hannelita
1 . 69

Bonus #2: Performance

#jfokus @hannelita

source: https://benchmarksgame.alioth.debian.org/u64q/compare.php?lang=rust&lang2=java

1 . 70

Bonus #3:
Free GIF!

1 . 71

References
https://www.youtube.com/watch?v=Q7lQCgnNWU0

https://www.quora.com/Why-do-programming-languages-use-type-systems

http://blogs.perl.org/users/ovid/2010/08/what-to-know-before-debating-

type-systems.html

http://lucacardelli.name/papers/typesystems.pdf

https://www.ralfj.de/blog/2015/10/12/formalizing-rust.html

http://jadpole.github.io/rust/type-system

https://wiki.haskell.org/Typing

https://gist.github.com/Kimundi/8391398

https://www.smashingmagazine.com/2013/04/introduction-to-programming-

type-systems/

http://pcwalton.github.io/blog/2012/08/08/a-gentle-introduction-to-traits-in-

rust/

https://llogiq.github.io/2016/02/28/java-rust.html

1 . 72

References - Rust Intro
https://doc.rust-lang.org/book/

https://doc.rust-lang.org/reference.html

https://doc.rust-lang.org/nomicon/

Rust And Pokémons -
http://slides.com/hannelitavante-hannelita/rust-and-pokmons-en#/

Rust Type System - http://slides.com/hannelitavante-hannelita/rust-type-

system-pybr12#/ (Python Brasil 2016 closing keynote)

1 . 73

Special Thanks

Rust Community - https://www.meetup.com/Rust-
Sao-Paulo-Meetup/ and @bltavares
B.C., for the constant review
JFokus Team

1 . 74

Thank you :)
Questions?

hannelita@gmail.com
@hannelita

1 . 75

