MISSION TO MARS

About me

Jeroen Resoort

JDriven

Learn new things

About this talk

e Robot

o Hardware
o Software

e AWS loT platform
e Demo
e AWS loT rules engine examples

Pathfinder mission

Pathfinder landed in 1997

Sojourner Rover explored the surface
of Mars for 3 months

Several other missions followed

Our own robot

What do we want it to do?

Our own robot

What do we want it to do?

e Move around
e Take pictures
e (Gather data

Our own robot

What does our robot need?

Our own robot

What does our robot need?

Power supply
Connectivity (internet)
Camera

Sensors

Our own robot

A lot of robots available
KickStarter project called ‘mBot’

Funded within 24 hours

KICK:S TARTER

Meet mBot

mBot features

e Easy to build

e Based on arduino

e Comes with Bluetooth or 2.4GHz, infrared remote control, light sensor, leds,
buttons, buzzer, line follower, ultrasonic

e Powered by AA batteries or 3.7V lithium battery

mBot features

@ File¥ Edity Serial Port Connected ¥ Boards{mBot)Y ExtensionsY Help¥

Scripts

Data&Blocks

wait €W secs

repeat €1

Control
I Operators
I Robots

& o 2K

mBot Program

répeat until. button _
at speed
r show face (e x: O v: @ characters:
P-waé € secs
' at speed €TIN
ishow face (FNew x O v: O characters:

wait @) secs
at speed (W)

set motor Gm speead m
set motor {EM speed (89

-

Back Upload to Arduing Edit with Arduino IDE

01 {

02 motor. move(1,100);

03 ledMtx_4 clearScreen();

04 lediitx_4 setColorindex(1;
05 ledMtx_4 setBrightness();
06 ledMtx_4 drawStr(0,7-0."");
o7 delay(1000%1);

08 motor move(d,100);

09 ledMtx_4 . clearScreen();

10 ledMitx_4_setColorindex(1);
11 ledMitx_4 setBrightness(g);
12 ledMtx_4 drawStr(0,7-0."r");
13 delay(1000%0.5);

14

15 motor.move(1,0);
16 motor_9.run(0);
17 motor_10.run{0);
19 1}

21 void loop(}

rogram Files (x86)\Arduinothardware\tools\avribin\avr-objcopy.exe

mBot only is not enough

We also need

e Connectivity 21 g | Button
e Camera 5 s ;‘“ ‘

ool e E«
e More processing power (0

puuy

?' SYTY] E‘e‘-? ﬁ 5
DC3.7~6V DE]

n
]
L |
og
[
ad
=

Buczczer

®

What about an ESP82667

Microcontroller and WiFi

Cool and cheap... but... 96 KiB of data RAM

Raspberry Pi

Pi 3 has built in WiFi
Camera interface
Way more powerful

Easy to extend through
GPIO header

UPS Pico

Power supply board

Runs for hours on
3000mAh battery

GrovePi

Plug-n-play

Lots of sensors
available

Pi Camera

J2 .
Raspberry Pi Ccmera

»

Easy to connect

Rev 1.3

000

E363

E363

E363

E363

Pi-Pan
Camera mount

Panning and Tilting

Comes with servo
controller board £ | ‘;ﬁiﬁ:‘} "

’ .

rons.co

Putting it all together

UPS-Pico, GrovePi and Pi-Pan controller stackable on Pi headers

. . . mﬁn,
Communication over i2c

[t
il ¢ A &
" atey sqa.naa\._\\raﬁ“

c«-s__g_.'_«

l‘ltllltlllll'l\h

L e o

4
Lo b p
JJb‘UBU 14 JG/LCNJU“;K*\NJT:(
R e .

. ol O O S o i 20,

W A RIS AN)

Putting it all together

Raspberry Pi connects to mBot through USB
Mbot is powered through USB

USB Serial communication with mBot

Putting it all together

But Raspberry Pi does not fit on mBot...

t all together

INg I

Putt

Meet MarsBot

e

|

om

o
s 8
£
oN
- -
-
c
o
-3
o

L
i)
R R

W

Al

And now we need
some software

Software: Python all the way

You can find a python library for everything :-)
We need to program our Pi to communicate with

Camera
PiPan
GrovePi

°
°
°
e mBot

Software: Controlling the camera

import picamera

@
DJ1awD) 14 A113qdspy
2
g5
Az
ésu
.

=

20
()
<
—
N

usm

9€3
9€3
£9€3
g€

Software: Controlling the camera

import picamera

camera = picamera.PiCamera()
camera.hflip = True
camera.vflip = True
camera.resolution = (800, 600)

°

<
~

1 A9y

=0
(=]
w
o
o
@
e
=
~
o,
)
Q
=]
@
=
(=]

(-]
(-]
(¢}

9€3
59€3
£9€3
£9€3

Software: Controlling the camera
import picamera

camera = picamera.PiCamera()
camera.hflip = True
camera.vflip = True
camera.resolution = (800, 600)

°

<
~

£ A9y

camera.capture(‘'marsbot-camera.jpg’)

=
(=]
w
o
o
@
e
=
~
o,
)
2]
=]
@
=
(=]

(-]
(-]
(¢}

9€3
59€3
£9€3
£9€3

Software: Controlling the Pi-Pan

import pipan

Software: Controlling the Pi-Pan
import pipan

pan = pipan.PiPan()

Software: Controlling the Pi-Pan
import pipan

pan = pipan.PiPan()

pan.neutral_pan()
pan.neutral_tilt()

Software: Controlling the Pi-Pan
import pipan

pan = pipan.PiPan()

pan.neutral_pan()
pan.neutral_tilt()

pan.do_pan(120)
pan.do_tilt(170)

Software: Getting data from temperature sensor

from grovepi import *

Software: Getting data from temperature sensor
from grovepi import *

dht_sensor_port =7 # Connect the DHt sensor to port 7

Software: Getting data from temperature sensor

from grovepi import *
dht_sensor _port =7 # Connect the DHt sensor to port 7

while True:
try:
[temp,hum] = dht(dht_sensor_port, 0)
print "temp =", temp, "C\thumidity =", hum,"%"

Software:

Oops...

Getting data from compas sensor

MARS CRUSTAL MAGNETISM ABr MARS GLOBAL SURVEYOR MAG/ER

a0

-30°
-B0°
-gg° - e e e e
o ag° 180° 270 3Je0°
East Longitude
I 5/aLet (nTiceg) [T TN
30 -0 3 4 -3 +3 1 3 10 30

Conrwiray. J. B Pglal, (20056) Proc. Matl, Acad, Scl. USA, 102, No. 42, 14870- 14575,

Software: Controlling the mBot

Sending commands over serial connection

set motor speed (9

set motor ({9 speed

4-4 22:20:6.891 > ff 55 06 00 02 0a 09 00 00
4-4 22:20:11.926 = ff 55 06 00 02 Oa Da 81 ff
4-4 22:20:16.962 > ff 55 06 00 02 Oa 09 00 00
4-4 22:20:23.460 > ff 55 06 00 02 Oa 0a 00 00
4-4 22:20:28.488 > ff 55 06 00 02 Oa 09 00 00
4-4 22:21:3.653 > f 55 06 00 02 0a 09 77 00
4-4 22:21:8.686 > ff 55 06 00 02 Oa Oa 81 ff
4-4 22:21:13.719 = ff 55 06 00 02 0a 09 00 00
4-4 22:21:18.721 = ff 55 06 00 02 Oa 0a 00 00

char mode

binary mode

Send

Software: Controlling the mBot

import serial
import binascii
import time

Software: Controlling the mBot

import serial
import binascii
import time

ser = serial.Serial('/dev/ttyUSB0’, 115200)

Software: Controlling the mBot

import serial
import binascii
import time

ser = serial.Serial('/dev/ttyUSB0', 115200)

motor1_on = binascii.unhexlify('ff550600020a0981ff') # half speed forward
motor1_off = binascii.unhexlify('ff550600020a090100')
motor1_rev = binascii.unhexlify('ff550600020a097f00') # half speed reverse
motor2_on = binascii.unhexlify('ff550600020a0a7{00')
motor2_off = binascii.unhexlify('ff550600020a0a0000")
motor2_rev = binascii.unhexlify('ff550600020a0a81ff")

Software: Controlling the mBot

ser.write(motor1_on)
ser.write(motor2_on)
time.sleep(1)

ser.write(motor1_off)
ser.write(motor2_off)

Now we have

e arobot
e software running on the robot

But we need more...

Amazon Web Services

One of the biggest cloud services providers
Huge number of cloud services
Available around the globe

AWS loT as a messaging platform for your loT
devices

Connect AWS loT to other Amazon services

*

~

API Gateway

7. AppStream

AWS loT

Certificate Manager

m CloudFormation

= CloudFront

o
14

CloudSearch

CloudTrail

L Cloudwatch

[}
[

L0 20 K | LU | O B)

CodeCommit
CodeDeploy
CodePipeline
Cognito
Config

Data Pipeline
Device Farm
Direct Connect

Directory Service

L.]
o
2
n

. DynamoDB

ip Ecz

[EC2 Container Service

.r Elastic Beanstalk

Elastic Transcoder

ElastiCache

EMR
GamelLift
Glacier

1AM

Inspector PREVIEW
Kinesis

Lambda

o0~ PdESB0

Machine Learning

S5 Mobile Analytics

Elastic File System PREVIEW

Elasticsearch Service

Import/Export Snowball

:jg’} Mobile Hub

¥ OpsWorks

@ rDs

It Redshift

4 Route 53

i s3

@ Service Catalog
¥ sEs

iy sNs

sQs

. Storage Gateway
dn swr

-" Trusted Advisor
vPC

& WAF
WorkDocs

& WorkMail

@ WorkSpaces

AWS loT

Secure communication with your devices
Messaging based on MQTT

Rules engine for routing and transforming messages, and connecting to other
Amazon services

Device Shadow for persisting state and keeping it available when your device is
offline

AWS loT DEVICE SDK
Set of client libraries to connect,
outhenticate and exchange messoges

AUTHENTICATION
& AUTHORIZATION

Secure with mutual
i authentication ond encryption

i REGISTRY
Assign a unique identity to
each devices

MESSAGES

DEVICE GATEWAY

(@) =

B (2

Communicate with
devices via MQTT,
WebSockets,
and HTTFP 1.1

RULES ENGINE
Transfarm device messages
based on rules and route to

AWS Services

AWS SERVICES
With these endpoints you con deliver
messages to every AWS service.

Jesi°

DEVICE SHADOWS !
Fersistent device state during
intermittent connections

APPLICATIONS
Applications can connect to
shadows at any time using an AP

Connecting MarsBot to AWS loT

AWS loT

Connecting MarsBot to AWS loT

AWS loT

Software: Setting up a connection with AWS loT

Using Eclipse paho

https://eclipse.org/paho/

Software: Setting up a connection with AWS loT

import paho.mqtt.client as paho
import os

import socket

import ssl

Software: Setting up a connection with AWS loT

awshost = "A2BKF6WMC3MQMP.iot.eu-west-1.amazonaws.com"
awsport = 8883

clientld = "marsbot"

thingName = "marsbot"

caPath = "aws-iot-rootCA.crt"

certPath = "cert.pem"”

keyPath = "privkey.pem"

Software: Setting up a connection with AWS loT

awshost = "A2BKF6WMC3MQMP.iot.eu-west-1.amazonaws.com"”
awsport = 8883

clientld = "marsbot"

thingName = "marsbot"

caPath = "aws-iot-rootCA.crt"

certPath = "cert.pem"

keyPath = "privkey.pem"

mgqttc = paho.Client()

mgqttc.tls_set(caPath, certfile=certPath, keyfile=keyPath, cert_reqs=ssl.CERT_REQUIRED,
tls_version=ssl.PROTOCOL_TLSv1_2, ciphers=None)

mgqttc.connect(awshost, awsport, keepalive=60)

Software: Subscribing to an MQTT topic

mqttc.on_connect = on_connect
mqttc.on_message = on_message
mgqttc.loop_forever()

Software: Subscribing to an MQTT topic

mqttc.on_connect = on_connect
mqttc.on_message = on_message
mqttc.loop_forever()

def on_connect(client, userdata, flags, rc):
print("Connection returned result: " + str(rc))
Subscribing in on_connect() means that if we lose the connection and
reconnect then subscriptions will be renewed.
client.subscribe("#" , 1)

Software: Responding to messages

def on_message(client, userdata, msg):
topic = str(msg.topic);
command = str(msg.payload);
print("topic: "+topic)
print("payload: "+command)
if topic == 'marsbot/mbot':

if command == 'fwd"
print("moving forward")
forward()

elif command == "left":

Software: Publishing data to an MQTT topic

mgqttc.publish('topic’, payload=mydata, qos=0, retain=False)

Connecting your web client to AWS loT

AWS loT

Connecting your web client to AWS loT

Sending and receive MQTT messages
Using Eclipse Paho javascript client

Using Websockets

Javascript

Very similar to the python client...

ictures to AWS

P

Sending

AWS loT

AWS S3

Software: Sharing an image on S3

import boto3
import uuid

Software: Sharing an image on S3

import boto3
import uuid

camera.capture(‘'marsbot-camera.jpg')

bucket _name = 'marsbot-bucket’

object_key = 'marsbot-camera-{}.jpg'.format(uuid.uuid4())

s3 = boto3.resource('s3’)

s3.Bucket(bucket_name).upload_file('marsbot-camera.jpg’, object_key)

url = s3client.generate_presigned_url('get_object', {'Bucket': bucket_name, 'Key': object_key})
mgqttc.publish('marsbot/cameralreply’, payload=url, gos=0, retain=False)

Demo time!

Rules engine

SQL-like syntax for filtering messages

SELECT * FROM 'marsbot/sensor/temp' WHERE temp > 30

Connect to other services

cloudwatchAlarm to change a CloudWatch alarm.
cloudwatchMetric to capture a CloudWatch metric.
dynamoDB to write data to a DynamoDB database.
elasticsearch to write data to a Amazon Elasticsearch Service domain.
kinesis to write data to a Amazon Kinesis stream.

lambda to invoke a Lambda function.

s3 to write data to a Amazon S3 bucket.

sns to write data as a push notification.

firehose to write data to an Amazon Kinesis Firehose stream.
sqs to write data to an SQS queue.

republish to republish the message on another MQTT topic.

Rules engine example - Connecting to DynamoDB

AWS loT DynamoDB

Rules engine example - Connecting to DynamoDB

"rule": {

"ruleDisabled": false,

"sgql": "SELECT * AS message FROM 'marsbot/sensor/temp'",
"description": "rule for dynamoDB",
"actions": [{

"dynamoDB": {

"hashKeyField": "key",
"roleArn": "arn:aws:iam::123456789012:role/aws_iot dynamoDB",
"tableName": "my ddb table",

"hashKeyValue": "${topic()}",

"rangeKeyValue": "S${timestamp () }",

"rangeKeyField": "timestamp"

Rules engine example - Connecting to Lambda

Execute code directly on AWS infrastructure

No need to manage your own servers or environments

Java, Python, NodedS

Rules engine example - Connecting to Lambda

AWS Lambda

AWS loT

Rules engine example - Connecting to AWS SNS

Send small messages to:

HTTP endpoints
Mobile phone as SMS

Email
AWS Lambda

Rules engine example - Connecting to AWS SNS

SNS

AWS loT

Recap

Robots are cool :-)
mBot is a great platform to start with
A Raspberry Pi has all the capabilities you need

Writing Python code is easy, grabbing it from internet is even more easy

Recap

Amazon's loT platform enables you to get started with loT without running your
own server

MQTT is a lightweight messaging framework, ideal for 0T applications

Using the rules engine, you can easily connect to other Amazon services

Finally

Twitter: @JeroenResoort

Blog: http://blog.jdriven.com/author/jeroen-resoort/

See my blog post for useful links and a shopping list
http://blog.jdriven.com/2016/04/mission-mars/

http://blog.jdriven.com/author/jeroen-resoort/
http://blog.jdriven.com/2016/04/mission-mars/
http://blog.jdriven.com/2016/04/mission-mars/

Questions? _-

MISSION TO MARS

