
Broken Promises

kiki @ lightbend

@kikisworldrace

Data is dangerous

Microservices are usually required
to cooperate to achieve some end

goal.

Microservices need to be able to
trust each other in order to

cooperate.

Microservices cooperate, they are
symbiotic but not parasitic.

Microservices have a relationship
to each other, but also a
relationship with data.

There are different types of data
that microservices must deal with.

1. Agent internal-data (aka entities)
2. Persisted Data
3. External Service Data

How data destroys relationships: Data can Lie

1.Lies of omission
2.Lies of commission

How data destroys relationships: Data can be
Corrupt

Corrupted by good or bad actors.

How data destroys relationships: Data can be
high maintenance.

Hard to secure some, but everyone
pays the price.

How data destroys relationships: Data is dumb.

Data is not self-aware.

How data destroys relationships: Data is dumb.

Data is too dumb to drive things. To
drive something you need to know

direction, how to steer, how to
interpret.

How data destroys relationships: Data is dumb.

Data can only inform.

How data destroys relationships: Data is dumb.

Stateless Architecture, another broken
promise…

If a microservice cannot rely on
data to properly inform, then

what?

We need trust.

Microservices be able to make and
keep promises.

Promise theory is an engineering
framework for coping with

uncertainty in information systems.

Promise theory is an engineering
framework for coping with

uncertainty in information systems.

Promise theory is an engineering
framework for coping with

uncertainty in information systems.

Promise theory is an engineering
framework for coping with

uncertainty in information systems.

Uncertainty
Divergence vs Convergence

Uncertainty
Divergence vs Convergence

Uncertainty
Divergence vs Convergence

Promises help you converge.

Obligations aren’t better?

Back to data and winning back
trust

Facts

AKA Events

Facts
• Should be immutable

• Should be relevant, or germane to the state at play
• Could be used to assess whether a promise has

been kept.

Opinions
AKA Views

Opinions
• Views should be generated as a result of ingesting facts.

• Views should be based on facts.
• Could be used to broadcast whether a promise was kept.

Systems are composed of facts,
opinions. States and views.

Give data benevolent masters or
stewards capable of making and

keeping promises.

What makes a good steward of
state?

What makes a good steward of
state?

Should be smart, intelligent, knowledgeable

What makes a good steward of
state?

Should produce the right, relevant data for its state.

What makes a good steward of
state?

Should know what is a good fact vs a bad fact.

Masters need to have clear
properly managed boundaries.

Context matters.

Masters need to have clear
properly managed boundaries.

Context matters.

Masters should be resistant to
corruption.

A good master is autonomous and
responsible.

How does a stateful steward repair
itself?

How does a stateful steward repair
itself?

By rebuilding the state from events.

How does a stateful steward repair
itself?

By using compensating actions.

How does a stateful steward repair
itself?

Having and executing on info to resolve conflicts.

How does a stateless advisor, view
creator, repair?

How does a stateless advisor, view
creator, repair?

Rebuild views.

Some views need to be fact based,
others do not.

Some views need to be fact based,
others do not.

Some views need to be fact based,
others do not.

Good masters aren’t data-driven,
they drive the data

Data should be isolated

Isolation; bad for humans, good for data

Promote Isolation & Autonomy by Separating
Facts from Views

Facts Views

Service Implementation

State Changing
Requests

Data View
Requests

Service API

Enter Lagom

Lagom empowers your master
stewards through isolation,

autonomous services

Remember - different types of data
that microservices must deal with.

1. Agent internal-data (aka entities)
2. Persisted Data
3. External Service Data

Account Context

account
A

account
C

account
B

$$

Current
Account

Balance is the
State

Agent Internal Data

Lagom Encourages and Enables
You to Contain Mutable State &

Publish Facts

Store	
facts	as	
source	
of	truth

Entity with published
intent

Store	
facts	as	
source	
of	truth

Command + Outer
Boundary Call

Always	
Maintain	a	
Current	view	

of	State

Entities in a Cluster

Lagom Allows you specialize in
order to have the right properties

for stewarding events/views.

Stateful Agents

FACTS VIEWS

Stateless Agents

Account Context

account
A

account
C

account
B

$$ You can do
transactions in

the boundary of
your persistent

entity

Shopping Context

Checkout Context Payments Context

Fulfillment Context

Order Context
Manages Saga

Lagom uses asynchronous
messaging, asynchronous IO &

distributed persistence patterns

client
co

m
m

an
d

co
m

m
an

d

node

nodenodenode

Reactive programming
REST messaging streaming

Stateless Behavior

node

Reactive programming

Stateful Entity

Write model
event log

DS

Event (fact)

Event (fact)

Read model
query db

DS

Event (fact) Event (fact)

Service
discovery

Service
gateway

Authentication

…

command

command

command

Re
ac

tiv
e

Sy
st

em

data

spring

play

akka

akka

JavaRX

Reactive
System

Reactive Systems design is used in
between the Microservices, allowing the
creation of systems of Microservices that
play by the rules of distributed systems—
Responsiveness through Resilience and
Elasticity made possible by being
Message-Driven.

Summary
Data can hurt relationships if you let it.

Build trust by managing data with specialized stewards.

Empower your entities to keep their promises.

Managing state requires care, awareness.

Distributed systems require a level up on the care.

Summary

https://github.com/kikiya/wallet-exercise

