
Lost in transaction

mail@bernd-ruecker.com | @berndruecker

http://bernd-ruecker.com/

Co-Founder & Developer Advocate

mailto:mail@bernd-ruecker.com
http://bernd-ruecker.com/

REST, SOAP,
Cloud, Saas,

Microservices, SCS,
FaaS, Serverless,

…

Distributed systems

Distributed systems

Challenges of
asynchronicity

Distributed
Transactions

Communication
is complex

Communication
is complex

Challenge #1:

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

Some
Service

But keep it local!
Be resilient.

Failure will happen.
Accept it!

Let‘s start with a simple example

Credit
Card

Payment

REST

Circuit
Breaker

Photo by CITYEDV, available under Creative Commons CC0 1.0 license.

https://pixabay.com/de/schutzschalter-fi-schalter-1167327/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Live hacking

Getting from https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV1.java to V2

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV1.java

Fail fast
is important

Fail fast
is important

but not enough!

Photo by Tookapic, available under Creative Commons CC0 1.0 license.

https://www.pexels.com/photo/flying-plane-travel-ua-21852/
https://creativecommons.org/publicdomain/zero/1.0/

„There was an error
while sending your

boarding pass“

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

Current situation

Circuit
breaker

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

Current situation - the bad part

Stateful
Retry

„There was an error
while sending your

boarding pass“

We are having some technical
difficulties and cannot present you

your boarding pass right away.

But we do actively retry ourselves, so
lean back, relax and we will send it

on time.

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

Stateful
Retry

Possible situation – much better!

The failure
never leaves
this scope!

Persist thing
(Entity, Actor, …)

State machine or
workflow engine

Typical
concerns

DIY = effort,
accidental
complexity

Complex,
proprietary,

heavyweight, slow,
developer adverse

Scheduling, Versioning,
operating, visibility,
scalability, …

Handling
State

State machines or
workflow engines

CADENCE

Live hacking

Getting to https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV3.java

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV3.java

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

Workflows live inside service boundaries

Manigfold architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Manigfold architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Manigfold architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Manigfold architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

generateBoardingPass

HTTP 200 OK

HTTP 202 ACCEPTED

Check-in

A synchronous response is possible in the
happy case, otherwise it is switched to

asynchronous processing.

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

„Eh – no!“

“The customers want synchronous responses!”

Synchronous communication
is the crystal meth of

distributed programming

Todd Montgomery and Martin Thompson
in “How did we end up here” at GOTO Chicago 2015

Challenge #2:

Challenges of
asynchronicity

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

Asynchronous communication

You need to
monitor
timeouts

Check-in

3D-
Barcode

Generator

Web-UI

Me

Output
Mgmt

Remember…

The failure
never leaves
this scope!

Workflow…

Workflow…

Duplicates
Duplicates

857621972_ded037d1db_b.jpg

Photo by oz dean, available under Creative Commons BY 2.0 license.

https://www.flickr.com/photos/forcefeed_swede/857621972
https://creativecommons.org/licenses/by/2.0/

It is impossible to
differentiate certain

failure scenarios.

This is also true for
synchronous

request/response!

Service
Provider

Client

has to implement

Timeout, Retry
has to implement

Idempotency

Client Service Provider

We are processing your payment.

Do not leave this page.

And for god sake – do not reload!

It is a
business
problem
anyway!

We are currently processing your request.
Don‘t worry, it will happen safely –

even if you loose connection.
Feel free to reload this page any time!

Who has no problems
operating a message bus?

Dead messages | No context | Inaccesible payload | Hard to redeliver |
Home-grown message hospitals | …

Manigfold architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Manigfold architecture options

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

https://blog.bernd-ruecker.com/architecture-options-to-run-a-workflow-engine-6c2419902d91

Challenge #3:

Distributed
Transactions
Distributed

Transactions

Distributed
systems

Business transactions (aka Saga pattern)

Compensation

Eventual consistency

Temporarily
inconsistent state

But only
temporarily!

Live hacking

Getting to https://github.com/flowing/flowing-retail/blob/master/payment-
rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV6.java

https://github.com/flowing/flowing-retail/blob/master/payment-rest/src/main/java/io/flowing/retail/payment/port/resthacks/PaymentRestHacksControllerV6.java

has to implement

Timeout, Retry,
Compensation

has to offer

Compensation
has to implement

Idempotency

Client Service Provider

has to implement

Timeout, Retry,
Compensation

has to offer

Compensation
has to implement

Idempotency

Client Service Provider

Event-driven example also available

InventoryPaymentOrder ShippingCheckout Monitor

https://github.com/flowing/flowing-retail/

Human
Tasks

H2 H2

https://github.com/flowing/flowing-retail/

Workflows live inside service boundaries*

*in DDD:
Bounded Contexts

Understand complexity of distributed systems
Know strategies and tools to handle it
e.g. Circuit breaker (Hystrix)

Workflow engine for stateful retry, waiting, timeout
and compensation (Camunda)

Thank you!

Contact:
bernd.ruecker@camunda.com

@berndruecker

Slides:
https://bernd-ruecker.com

Blog:
https://blog.bernd-ruecker.com

Code online:
https://github.com/flowing

https://www.infoq.com/articles/
events-workflow-automation With thoughts from http://flowing.io

@berndruecker | @martinschimak

mailto:bernd.ruecker@camunda.com
http://bernd-ruecker.com/
https://blog.bernd-ruecker.com/
https://github.com/flowing
https://www.infoq.com/articles/events-workflow-automation
http://flowing.io/

