
The Fn Project

Serverless Everywhere and Anywhere

Travis Reeder
Architect at Oracle
@treeder

The open source, cloud-agnostic serverless platform



What is Serverless?

● Serverless is an abstraction of infrastructure and its operations 
including provisioning, scaling, patching, etc.

● Serverless architecture is when an app is built entirely on 
serverless components (compute, storage, networking)

● FaaS is the compute component in a serverless architecture



Functions-as-a-Service

● Functions are small bits of code that take some input, do one 
simple thing, then produce output

● As a service means these functions run on a system that takes 
care of provisioning, scaling, patching, maintaining, etc. Each 
function scales independently.

In mathematics, a function is a relation between a set 
of inputs and a set of permissible outputs with the 
property that each input is related to exactly one output.
Function (mathematics) - Wikipedia
https://en.wikipedia.org/wiki/Function_(mathematics)



What about Microservices?



Why Serverless for developers?

● Easier: Just think about your code, not infrastructure

● Faster: Deploy faster, iterate faster, innovate faster

● Cheaper: Only pay for what you use to the 100ms (never idle)

● Powerful: Auto scaling and management



Why Serverless for a business?

● Agility: Devs move faster with less dependencies

● Innovation: Devs can quickly iterate on new ideas

● Cost Reduction: Pay only for execution, not for idle, and 
reduce ops costs.



Even on Private Cloud

● Same advantages for developers

● One system to manage and operate for all of your applications

● Optimizes hardware utilization



Typical Applications



Serverless Applications



Introducing the Fn Project
● Open-source serverless compute platform

● Can be deployed to any cloud and on-premise

● Simple and extensible by design

● Containers are primitives

● Hot containers provide fast response times

● Active w/ ~2500 commits across 50+ contributors

● Independently governed with plans for foundation

● Apache 2.0 license



For Developers



An Fn Function
● Small chunk of code wrapped into a container image

● Input via STDIN and environment

● Output to STDOUT

● Logs to STDERR

The Fn server handles everything else.



Fn CLI

● fn init --runtime java hello

● fn run

● fn test

● fn deploy --app myapp

● fn call myapp myfunc

→ http://localhost:8080/r/myapp/myfunc



fn deploy details
1. Builds container (multi-stage) + bumps version

2. Pushes container to registry

3. Creates/updates function route (servers lazy load images)

MyFunc:0.0.2
MyFunc:0.0.2 MyFunc:0.0.2

Your code
Fn Service

myfunc → 
/r/myapp/myfunc:0.0.2

1 2 3



Function Development Kits (FDKs)
● Used to help with parsing input and writing output

● Familiar syntax for Lambda developers

● Simply write a `handler` function that adheres to the FDK’s 
interface and it will parse STDIN and provide the input data to 
your function and deal with writing the proper output format.

● Makes it a lot easier to write hot functions



Debugging
● fn calls list myapp

● fn calls get myapp <call-id>

● fn logs get myapp <call-id>

● Metrics created using OpenTracing w/ initial collectors and 
extensions for Prometheus, ZipKin, and soon Jaeger



Fn UI



For Operators



Architecture



Fn Server
● Handles CRUD operations for setting up routes and functions

● API gateway -> Executes function, returns response to clients

● Queues async function calls

● Executes async function calls when capacity is available

● Written in Go, easy to extend via extension system



Fn LB
● Simple, fast load balancer that routes functions to certain nodes 

consistently for hot function efficiency

● Scales each function independently based on traffic to any 
particular function

● Can be used to scale Fn servers and infrastructure as well as it 
has a view of global state of all fn servers



Fn LB Details



Supporting Services
● DB, MQ, blob store are all pluggable modules that are thin 

wrappers around their respective drivers. 
○ DB: MySQL, sqlite3, Postgres

○ Queue: Redis, Kafka

○ Registry: Any Docker v2-compliant, even private

● Metrics/Monitoring
○ OpenTracing API for metrics

○ Prometheus support, pluggable backends

○ Logging via syslog



DEMO!



Thank you!

1. Star the project: github.com/fnproject/fn

2. Join the conversation: slack.fnproject.io

3. Learn more: fnproject.io

4. We’re hiring engineers and evangelists: 
travis.reeder@oracle.com

Travis Reeder
Architect at Oracle
@treeder

Get Involved

https://github.com/fnproject/fn
http://slack.fnproject.io
http://fnproject.io


Appendix



Request Flow



Request Flow (use this one or the next 2)



Sync Request



Async Request


