fn

The Fn Project

The open source, cloud-agnostic serverless platform

Serverless Everywhere and Anywhere

Travis Reeder
Architect at Oracle
@treeder

What is Serverless?

e Serverless is an abstraction of infrastructure and its operations
iIncluding provisioning, scaling, patching, etc.

e Serverless architecture is when an app is built entirely on
serverless components (compute, storage, networking)

e FaaS is the compute component in a serverless architecture

2fn

Functions-as-a-Service

In mathematics, a function is a relation between a set INPUT x

of inputs and a set of permissible outputs with the R
property that each input is related to exactly one output. '

Function (mathematics) - Wikipedia
https://en.wikipedia.org/wiki/Function_(mathematics)

e Functions are small bits of code that take some input, do one
simple thing, then produce output

e As a service means these functions run on a system that takes
care of provisioning, scaling, patching, maintaining, etc. Each
function scales independently.

2fn

What about Microservices?

Monolith

Microservice

Microservice

Microservice

Microservice

Microservice

Function

Function

Function

Fungtion

Function

Function

Function

Function

Function

Funetion

Function

Function

Function

Function

Function

Fungtion

Function

Function

Function

2fn

Why Serverless for developers?

e Easier: Just think about your code, not infrastructure
e Faster: Deploy faster, iterate faster, innovate faster
e Cheaper: Only pay for what you use to the 100ms (never idle)

e Powerful: Auto scaling and management

2fn

Why Serverless for a business?

e Agility: Devs move faster with less dependencies
e Innovation: Devs can quickly iterate on new ideas

e Cost Reduction: Pay only for execution, not for idle, and
reduce ops costs.

2fn

Even on Private Cloud

e Same advantages for developers
e One system to manage and operate for all of your applications

e Optimizes hardware utilization

2fn

Typical Applications

Legend: r = request, 1 = idle

Scale: time

Server 1:
|appl | & as
Server 2:
|app2 | & @
Server 3:

|app3 | & ase

app-resources.txt hosted with @ by GitHub view raw

2fn

Serverless Applications

Legend: alfl = app 1, function 1

Scale: time

Server 1:

|alfl-——|a2fl-|alf3——|adfl-|a4f2————- |alfl-—-|a3f2-|alfl--—-|a5fl1-|a2f3-—|...

Server 2:

|a5fl-|adf2————— |a3f2-|alf3-——-|ad4fl-|adf2————— |alfl-—-|a3f2-|alfl-——|a5f2|...

Server 3:

|a9f2——-| a4 f2=———— |a3f2-|alf3———|a4fl-|adf2-————- |alfl-——|a3f2-|a6fl-|a5f2]|...
serverless-resources.txt hosted with @ by GitHub view raw

2fn

Introducing the Fn Project

e Open-source serverless compute platform

e Can be deployed to any cloud and on-premise

e Simple and extensible by design

e Containers are primitives

e Hot containers provide fast response times

e Active w/ ~2500 commits across 50+ contributors
e Independently governed with plans for foundation

e Apache 2.0 license

2fn

For Developers

An Fn Function

e Small chunk of code wrapped into a container image
e Input via STDIN and environment

e Outputto STDOUT

e Logsto STDERR

The Fn server handles everything else.

2fn

Fn CLI

e fn init --runtime java hello
e fnrun

o fn test

e fn deploy --app myapp

e fn call myapp myfunc

— http://localhost:8080/r/myapp/myfunc
2fn

fn deploy details

1. Builds container (multi-stage) + bumps version
2. Pushes container to registry

3. Creates/updates function route (servers lazy load images)

__

2

Your code ! E D
l P ! b Fn Service
i | : | myfunc — -l
Lo . E— Lo /r/myapp/myfunc:0.0.2 =
MyFunc:0.0.2 : i MyFunc:0.0.2 : E

Function Development Kits (FDKs)

e Used to help with parsing input and writing output
e Familiar syntax for Lambda developers

e Simply write a "handler’ function that adheres to the FDK’s
interface and it will parse STDIN and provide the input data to
your function and deal with writing the proper output format.

e Makes it a lot easier to write hot functions

Rub (((DD
- y = . n.de
Java 4 (S

python’ ay

2fn

Debugging

e fn calls list myapp
e fn calls get myapp <call-id>
e fn logs get myapp <call-id>

e Metrics created using OpenTracing w/ initial collectors and
extensions for Prometheus, ZipKin, and soon Jaeger

2fn

«
]

Apps

DaShboard + Create App

Applications
Name Actions
Quick Sta
’ Quick Start T o Bt v
@ Fn APl app3 & Edit |~
) mnaitub hello-async-app & et~
Ul Githut o
O Gty Statistics Auto refresh
Queued: 404 Running: 8 Completed: 170 Failed: 1
[/hellot:3 [/hello1: 102 [/helio1: 1
[/hello2: 47 [/hello2: 0
/hello3: 20 /helio3: 0
180 10
160 @
20 | - 140 o —— &
120 T i
A 6
Sl 100 -
- = 5
80
100 4
60 5
- % 40 2
il A,) 20 3 e

<
o

| 0
0 0 0 QbaR 5 n

For Operators

Architecture

Fn Server

Fn Server

' . Container
Registry
Database MQ Object Store T
Metadata for Forasuic For logs, etc

apps/routes

2fn

Fn Server

e Handles CRUD operations for setting up routes and functions
e APl gateway -> Executes function, returns response to clients
e Queues async function calls

e Executes async function calls when capacity is available

e Written in Go, easy to extend via extension system

2fn

Fn LB

e Simple, fast load balancer that routes functions to certain nodes
consistently for hot function efficiency

e Scales each function independently based on traffic to any
particular function

e (Can be used to scale Fn servers and infrastructure as well as it
has a view of global state of all fn servers

2fn

Fn LB Details 1) Request comes in

2) Route to same server based on function to be called,

Request for f1 -> sepve using consistent hash

Fn Server 1 Fn Server 2 Fn Server 4

4) Send function response back to LB 3a) If first time server runs function, it will cache function
image and start “hot” container

3b) If not the first time, but no recent requests, use
cached image and start "hot” container

3c) If active, route to running container

2fn

Supporting Services

e DB, MQ, blob store are all pluggable modules that are thin
wrappers around their respective drivers.

o DB: MySQL, sqlite3, Postgres

o Queue: Redis, Kafka

o Registry: Any Docker v2-compliant, even private
e Metrics/Monitoring

o OpenTracing API for metrics

o Prometheus support, pluggable backends

o Logging via syslog ;%f

DEMO!

fn

Thank you!

Travis Reeder
Architect at Oracle
@treeder

Get Involved

Star the project: github.com/fnproject/fn

Join the conversation: slack.fnproject.io

Learn more: fnproject.io

We’'re hiring engineers and evangelists:
travis.reeder@oracle.com
fn

https://github.com/fnproject/fn
http://slack.fnproject.io
http://fnproject.io

Appendix

Request Flow

Request Flow (use 1" «...w.n Or the next 2)

2 async)
R.Equest into APIT?'Juattil:.r{ay 2) Lookup route
M
o iF Database
For async Metadata for

apps/routes

3) Find a slot

4) Pull image
If not already cached

* Slot capacity based on available memory
Container Slot Container Slot

Container
Container Slot Registry

5) Execute

6a) Return results

Object Store 6b) Store logs, metrics, etc

For logs, etc

2fn

Sync Request

1) Request comes in

Async Request W

(cpu & mem) are available

fn

