
The Hundred Kilobytes Kernel (HK2)
Rikard Thulin & Ferid Sabanovic
IBS JavaSolutions

{ firstname.surname@ibs.se }

 ©
 IB

S
 2007

What we will present
• A component based architecture

– Exemplified by explaining the details of one such implementation:
HK2

– Could be realized by many others such as OSGi
– We will highlight some differences between OSGi and HK2

 ©
 IB

S
 2007

The problem
Version 1.0 with nice design

 ©
 IB

S
 2007

The problem
Version 1.1 – just needed a few hacks

 ©
 IB

S
 2007

The problem
Version 1.2 – still works but but messy...

 ©
 IB

S
 2007

The problem
Version 1.2 – still works but but messy...

Contest: Guess what the next version looks like?

 ©
 IB

S
 2007

The problem
Good guess, but wrong!

 ©
 IB

S
 2007

The problem
What? How is this possible?

 ©
 IB

S
 2007

The problem
Version 2.0 – re-write, looking good again

 ©
 IB

S
 2007

The problem
Version 2.1 – just needed a few hacks...

 ©
 IB

S
 2007

The problem
Version 2.2 – still works but but messy...

 ©
 IB

S
 2007

Other problems
• Deployment

– We do not want to re-deploy the whole application, only the unit
that was modified

– Only the deployed unit is affected, no need to bring the whole
system down

– With a component based architecture this can be very clean and
neat

– The Java IDE:s does this a lot...
• Release Management

– Possible to release features when ready, avoiding big bang
releases (kind of agile)

 ©
 IB

S
 2007

The one and only historical slide
• Component based architectures is nothing new

– Has been around for years
• OSGi established in 1999

• The interest picked up when Eclipse switched to
OSGi

• All (or almost) application servers are going there
– BEA microService Architecture (OSGi)
– JBoss Microcontainer (JMX based)
– JonAS (OSGi)
– WebSphere 6.1 (OSGi)
– Apache Geronimo (OSGi)
– GlassFish V3 (HK2)

 ©
 IB

S
 2007

SD times about OSGi

”a quite contender for the title of most important
technology of the decade”

 ©
 IB

S
 2007

HK2 from 10K meters
• Micro kernel for applications

– Module subsystem
– Component/Service model

• Applications are divided into modules
• Applications are executed in a Runtime container

– Supports Dependency Injection
– Loads modules and resolves dependencies between modules

• It is the foundation for GlassFish V3

 ©
 IB

S
 2007

OSGi

 ©
 IB

S
 2007

 OSGi + Spring

 ©
 IB

S
 2007

 OSGi + Spring

HK2

 ©
 IB

S
 2007

DEMO

”What it is”

How HK2 is used in GlassFish V3

 ©
 IB

S
 2007

HK2 from 5K meters
• Environment with encourages healthy design
• “a module subsystem coupled with a simple yet

powerful component model to build software”
• Based on contracts
• Separation of API and SPI (Service Provider Interface)
• Dynamic, components discovered at runtime
• Applications are “composed” in runtime
• Uses Dependency Injection (IoC)

 ©
 IB

S
 2007

Why, how, and politics...
 Why:

“HK2 does several things and it would exist even if we
used OSGi. One of its roles is to encapsulate the
dependency on the modular system so GFv3 could be
easily switched from one system (JSR277) to another
(OSGi)” - by Eduardo Pelegri-Llopart, Distinguished Engineer at Sun

How:
HK2 proposes a model which is aimed to be friendly
to existing technologies such as OSGi yet will provide
a path to the implementation of modules in Java SE 7

Politics:
There is a lot of politics regarding JSR 277 and OSGi.
As we do not represent SUN or OSGi we will likely not
be able to answer questions about this

 ©
 IB

S
 2007

We all love acronyms (WALA)

• Many names:
– Service Component Architecture (SCA)
– Service Oriented Architecture (SOA)
– Module / Component system

SCA != SOA != Component system

• A piece of code can have many names
– Service
– Component
– Module
– Bundle
– Plug-in

 ©
 IB

S
 2007

HK2 Facts
• Loosely based on Java Module System (JSR 277)

– Branch exists to run on top of the JSR 277 implementation
• Small footprint, ~50Kb

– Less then ~5000 LOC (without comments)
– Impressive design: clean and elegant

• Runs on Java SE 5
• Current version is 0.2-SNAPSHOT
• License same as GFv3: GPLv2 and CDDL

 ©
 IB

S
 2007

The two parts
• The module subsystem

– The plug-in ecosystem
– Responsible for loading and unloading modules
– 23 classes and 7 interfaces

• The components runtime
– Create instances of Services
– 16 classes and 5 interfaces

 ©
 IB

S
 2007

Modules
• Modules are Plain Old Java Jar-files

– Meta information stored in the manifest
– The manifest is created using a maven plug-in

- Possible to do this manually
• Declare their dependencies to other modules
• Has a life cycle

– Dynamically loaded and unloaded
• Allows multiple version at the same time
• Module = plug-in = bundle = component
• Module != Service

 ©
 IB

S
 2007

Dependencies
• Modularization will give you a better picture of what

depend on what
• No need to look at the source code to find

dependencies
• You can still end-up with “plug-in hell”, but at least

you would know what the mess looks like

 ©
 IB

S
 2007

Module definition
• A module is defined by

– Name, ”se.jsolutions.hk2.demo2”
– Version number, ”1.2.3-rc1”
– Imports (dependencies), ”se.jsolutions.hk2.demo1”
– Exports (SPI), ”se.jsolutions.hk2.demo1.spi”

 ©
 IB

S
 2007

Module definition: name

• Any string but in reality the package name
• Must be unique (for the universe and beyond)
• Dependencies are declared by name

 ©
 IB

S
 2007

Module definition: version

• The format of a version is defined as:
major.minor[.micro[_patch]][-qualifier]

major, minor and micro are non-negative integers
patch indicates a patch release
String that indicates a non FCS release

Example: 3.2-RC1
3.2.1

 ©
 IB

S
 2007

Module definition: imports

• A module may depend on 0 to n modules
• Modules are by default shared by its users

– Possible to do a private import
• Imports can be limited by version range

– Open range: a.b+
– Family range: a*

• Possible to re-export an imported SPI
– Valuable for containers; GlassFish exports the Ruby container

 ©
 IB

S
 2007

Module definition: exports

• Defines the published (if any) API/SPI
• Classes that are not exported in a module can not be

used by others

 ©
 IB

S
 2007

Module initialization
• A module can be in the following states:

– NEW
– PREPARING
– VALIDATING
– RESOLVED
– READY
– ERROR

• As a module developer you do not need to care
• Since applications are “composed” at runtime, they

may break at runtime!

 ©
 IB

S
 2007

Module unloading

• GC does the job, thus modules can not be
programmatically unloaded

• A module can be unloaded when
– No other module has dependencies to it
– All instances of all classes has been GC
– The modules is not defined as “sticky”

• If you got a reference to a service, it can not go away
– unlike OSGi

 ©
 IB

S
 2007

Class Loading
• To enforce the module contract only the public

interface is visible to external user
• This is achieved with two class loaders:

– Public façade Class Loader
- For classes in the SPI

– Private Class Loader
- For all other classes

• The module subsystem can bootstrap itself
• No more classpath

– java -jar GlassFish.jar

 ©
 IB

S
 2007

Bootstrapping

• A HK2 executable
– Does not have a main method/class
– Is implemented as a set of modules

• The bootstrap
– Not a HK2 module
– Is loaded by the application class loader
– Loads the module that implements the ModuleStartup interface

• This allows the HK2 environment to be embedded
– The outer Java environment decides the class loader the

bootstrap should be loaded with

 ©
 IB

S
 2007

Module repository
• Storage for modules

– Local or remote
– Has a weight

• Modules can be added and removed in runtime
• Different implementations

– Disk based
– Maven 2 repository
– JSR 277 *
– Or create your own JavaSpace repository...

• A maven based repository is handy
– You only need the bootstrap, the rest is fetched from the

repository when needed

* not implemented

 ©
 IB

S
 2007

Modules Registry
• Container for modules instances
• Only one shared instance of a module in one class

loader
– Be aware of private imports...

 ©
 IB

S
 2007

I can do modularization anyway!
• Yes, but:

“If the build and test environments do not
enforce modularity, then the code is not
modular”

Gregory Brail, John Wells, BEA Systems, “OSGi – The Good, The Bad, and the Ugly”

 ©
 IB

S
 2007

HK2 Components Runtime
• Creates and configures objects

– Injecting required objects and its configuration
– Makes objects available so it can be injected by others

 ©
 IB

S
 2007

Services
• POJO
• Identifies the building blocks or the extension points
• State-full or state-less
• Declared by META-INF/services in the jar

– Generated by the maven plug-in
• Two annotations

– @Contract
– @Service

 ©
 IB

S
 2007

Annotations

 ©
 IB

S
 2007

Annotations

 ©
 IB

S
 2007

Instantiation

• Instances are created by the ComponentManager
– ”new” is never used

• Instances can be injected to fields or setters
– @Inject annotation
– Instance can be further qualified with scope and name

 @Inject(name=”Dog”)
Animal animal;

 @Inject
public void setAnimal(Animal animal) { ... }

 ©
 IB

S
 2007

Dependency Injection in HK2
• In HK2 dependency injection is clear and readable

@Inject
SomeService service;

• Reading the source code without the annotation it
seams like the attribute is unassigned

• Be aware that using @Inject on setters (evil) are not
so OO

 ©
 IB

S
 2007

Services – the extension points
• We want to avoid

for (String arg : args) {
if (arg.equals(“ls”)) executeLs(); else
if (arg.equals(“echo”)) executeEcho(); else
if (arg.equals(“uname”)) executeUname(); else
showUsage();

 }

 ©
 IB

S
 2007

Services
• We can use Services

@Contract
public interface Command {

public void getName();
public void execute();

}

@Service
public class Uname implements Command {

...
}

 ©
 IB

S
 2007

Services
• And use dependency injection

@Inject
Command[] commands;
...
for (String arg : args) {

for (Command cmd : commands) {
if (cmd.getName().equals(arg)) {

cmd.execute(); break;
}

}
}

• Possible to add options dynamically

 ©
 IB

S
 2007

DEMO

”Extensibility”

 ©
 IB

S
 2007

Services
• Decouples code

– Application code should be independent of the concrete
implementation of the service interface

– Isolates us from programming with modules directly
– If every module would reference each other, all modules would

be loaded at startup

 ©
 IB

S
 2007

Services example
public class Server {

...
{
 // Thread that post new files to its handlers

Scanner dir = new DirectoryScanner(“/tmp”);

 Handler pdf = new PDFHandler();

dir.add(pdf); // Must be called before start()
 Handler png = new PNGHandler();

dir.add(png); // Must be called before start()

 dir.start();

}

 ©
 IB

S
 2007

Services example
public class Server {

...
{
 // Thread that post new files to its handlers

Scanner dir = new DirectoryScanner(“/tmp”);

 Handler pdf = new PDFHandler();

dir.add(pdf); // Must be called before start()
 Handler png = new PNGHandler();

dir.add(png); // Must be called before start()

 dir.start();

}

Tight coupling

 ©
 IB

S
 2007

Services example
public class Server {

...
{
 // Thread that post new files to its handlers

Scanner dir = new DirectoryScanner(“/tmp”);

 Handler pdf = new PDFHandler();

dir.add(pdf); // Must be called before start()
 Handler png = new PNGHandler();

dir.add(png); // Must be called before start()

 dir.start();

}

Tight coupling

Code growsCode grows

 ©
 IB

S
 2007

Services example
public class Server {

...
{
 // Thread that post new files to its handlers

Scanner dir = new DirectoryScanner(“/tmp”);

 Handler pdf = new PDFHandler();

dir.add(pdf); // Must be called before start()
 Handler png = new PNGHandler();

dir.add(png); // Must be called before start()

 dir.start();

}

Tight coupling

Code growsCode grows

Handler must know
how to be used

 ©
 IB

S
 2007

Services example
public class Server {

...
{
 // Thread that post new files to its handlers

Scanner dir = new DirectoryScanner(“/tmp”);

 Handler pdf = new PDFHandler();

dir.add(pdf); // Must be called before start()
 Handler png = new PNGHandler();

dir.add(png); // Must be called before start()

 dir.start();

}

Tight coupling

Code growsCode grows

Handler must know
how to be used

Static

 ©
 IB

S
 2007

Refactor as Service
@Contract
public interface Handler {
}

@Service
public class PDFHandler implements Handler {
}

@Service
public class PNGHandler implements Handler {
}

 ©
 IB

S
 2007

Refactor as Service

// Thread that post new files to its handlers
DirectoryScanner dir = new DirectoryScanner();

@Inject
Handler[] handlers;

for (Handler handler : handlers) {
 dir.add(handler);
}

dir.start(); // Must be called after handlers are added

 ©
 IB

S
 2007

Scope

• Services instances has a scope
– Singleton
– Per thread
– Per application
– Or custom...

- GridScope / RemoteScope
- PooledScope

– No “web scope” (request/session) out of the box
- HK2 is not a web container

• Scopes are Services themselves
• A scope is responsible for storing the service

instance tied to itself

 ©
 IB

S
 2007

DEMO

”Scope”

 ©
 IB

S
 2007

HK2 and OSGi differences
• The intention with HK2 is not to replace OSGi
• HK2 and OSGi share many architecture concepts
• HK2 was developed as the architecture for

GlassFish V3, not as a general purpose framework
• HK2 is more light weight, OSGi is a full blown

framework
• HK2 is developed by the GlassFish community
• The OSGi specification is developed by the OSGi

Alliance (more like JCP); fee $3,000 - $20,000 annually
• OSGi is well documented, mature, and well proven

– HK2 is “0.2-SNAPSHOT”
• OSGi Compendium Services (R4)

– Log Service, Position, UpnP Service, and many more

 ©
 IB

S
 2007

HK2 and OSGi differences
• OSGi defines remote management
• HK2 is not designed for non-stop applications

– Always expect RuntimeException when calling a service in
OSGi

• Spring has added support for OSGi
• OSGi is kind of Class Loader on steroid
• OSGi is a specification with many implementations
• OSGi is supported

– Training
– Consultants

 ©
 IB

S
 2007

Transactions/Security/etc are missing...
• Obviously by design – else it would not be an

application micro kernel
• If you are building a an application using HK2 and

need transactions you are free to choose
– JPA, Hibernate, etc
– Spring

 ©
 IB

S
 2007

HK2 + Spring (*)
• Spring (2.5+) creates beans from META-INF/Services

(*) Has not been tested – should work in theory

 ©
 IB

S
 2007

HK2 pros and cons
• Pros

– Small, well designed, and easy to grasp
– Dynamic
– Enforces modularization
– Delivery can be more flexible
– No more Jar-hell
– Understandable injection
– Less singletons

• Cons
– Not for non-stop applications
– Dynamic
– No “real” singletons (this is a good thing)
– Pooling, static is not static
– May introduce plug-in hell (if you do things wrong)

 ©
 IB

S
 2007

When to use this architecture
• Applications that need to be extended (plug-in based)
• Applications that are container based such as

application servers
• Large applications that needs to start quickly

• The perfect application to utilize this architecture is:
 >> ANT <<

– Would remove the classpath problems
– Would be easier to add new tasks
– LOC would be less
– Repository of tasks (actually based on maven...)

 ©
 IB

S
 2007

When not to use this architecture
• Static applications that have only one logical module

– The “jar” command
• If you do not want Dependency Injection

– (maybe) If you only have one implementation of a Service

 ©
 IB

S
 2007

Summary
• Component based architectures are here to stay
• Forecast

– More and more software will be developed with this kind of
architectural concepts

• Spring is going there
• All application servers are going there
• Java SE 7 is going there
• Our guess it that Java EE 6 or 7 will go there

– There will be business knowing this kind of architectures

 ©
 IB

S
 2007

Summary
Makes it possible to keep a good structure

 ©
 IB

S
 2007

Not a silver bullet
So you might still end up in a mess if done incorrect

 ©
 IB

S
 2007

Other component / module
subsystem technologies

• OSGi
– Knopflerfish
– Apache Felix
– Eclipse Equinox

• The Netbeans Platform
• JINI & JXTA
• OpenWings
• Java Business Integration (JBI)
• Maven 2
• JSR 277

– Java Module System
• JSR 294

– Improved Modularity Support in the Java Programming Language

 ©
 IB

S
 2007

(the not so) Famous last words...
• It is a common misconception that using the same

plug-in system would make it possible to mix and
match

• It would not be possible to use Eclipse plug-ins in
Netbeans if Netbeans used the OSGi framework
– The Eclipse platform is not the same as the Netbeans platform
– If they where, they would be the same application

Developing a HK2 module with NetBeans 6.0

 ©
 IB

S
 2007

References
• Presentation and source will be available at

http://jsolutions.se
• HK2 web site

https://hk2.dev.java.net/
• Glassfish v3 Engineers Guide

http://wiki.glassfish.java.net/Wiki.jsp?page=V3EngineersGuide
• JSR 277: Java Module System

http://jcp.org/en/jsr/detail?id=277
• OSGi™ - The Dynamic Module System for Java™

http://osgi.org/
• Wikipedia about Dependency Injection

http://en.wikipedia.org/wiki/Dependency_injection

https://hk2.dev.java.net/
http://jcp.org/en/jsr/detail?id=277
http://osgi.org/

 ©
 IB

S
 2007

Q & A

 ©
 IB

S
 2007

About the authors
• Rikard and Ferid is consultants at IBS JavaSolutions

– Rikard Thulin has been working with Java for over 10 years. In a
previous life he worked as a Java Architect at Sun Microsystems
Java Center. Rikard is one of the founders as well as a board
member of the Swedish Java User Group “Javaforum Sweden”.
Rikard holds a Master of Science in Software Engineering.

– Ferid Sabanovic interests include J2EE and other similar object
oriented technologies like .NET. Ferid is actively involved in the
Swedish Java User Group “Javaforum Sweden”. Ferid holds a
B.Sc degree in Informatics.

Developing a HK2 module with NetBeans 6.0

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• This tutorial will show you how to develop the famous

“Hello World” as a HK2 module using NetBeans
6.0/maven

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• The very first step is to create a new Maven Project

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• Maven Quickstart Archetyp:

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• We also must supply the artifact id, group id and the

version

• NetBeans actually creates a Hello world source
file named App in the package
se.javasolutions.hk2.HelloWorld

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• The next thing we need to do is to add the maven

repository containing HK2. The pom is located in the
Project Files folder. Add the following to pom.xml

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• Next we need to add the dependency to the hk2-

maven-plugin. To do this, select Add Library on the
Libraries folder in the project. Add the following

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• We also need to add a dependency to hk2 iteself

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• Now we must change the pom file to use the hk2-

maven plugin to build and package the the project

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• By default NetBeans assumes that we are using Java

1.4 and will therefor not recognize annotations
– Select Properties on the project folder and the category source
– Change Source/Binary Format to 1.5/1.6.
– Close and re-open the project

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• Now it is time to create the contract for our hello

world service

• As you can see is an ordinary interface with an
@Contract annotation.

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• The Service implementation is just as simple:

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• The App class is modified to implement the interface

ModuleStartup

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• The service instance is injected to the service field by

the HK2 runtime container (previous picture)
• And the very final thing we must to is to modify run

project action to (note the Set properties)

 ©
 IB

S
 2007

Developing a HK2 module with NetBeans 6.0
• Now you can run the project
• The complete NetBeans project with sources can be

downloaded from:
– http://jsolutions.se/wp-content/uploads/2008/01/helloworld.zip

• Feel free to send commends to rikard.thulin(at)ibs.se

• References
– HK2 development site

http://hk2.dev.java.net/
– GlassFish v3 Engineering Guide

http://wiki.glassfish.java.net/Wiki.jsp?page=V3EngineersGuide

