
High-speed SOA!

Managing High Performance

Transactional Services on

the Grid. —without hops

Owen Taylor

Blog:

http://www.jroller.com/owentaylor

About me. . .

• ORBs

• Containers

• Frustration

• ―The Final Frontier‖

• http://jroller.com/owentaylor

• http://www.openspaces.com

• owen@gigaspaces.com

What? Me SOA?

• Microsoft landscape

• XML

• Indeterminate performance

• Galactic responsibility

• Trains or Helicopters?

4

Services can be

Java, C++, .Net

Content-Based

Routing

Typical SOA model based on ESB

Most ESB solutions do not

address stateful services and

often use a centralized

database to share state

between services

The Teir_ful Reality: Train-wreck

Presentation
Logic

Business
Logic

Integration
Logic

Data Tier

Messaging
Tier

Client Tier

The latency path traverses multiple machines...

 The CPU(s) often sits idle waiting on I/O [waste OF $$$$]

How do you manage deployment?

How do you recover from failure?

How do you scale?

The Journey Step 1

• Caching :: read-mostly

– Small impact on architecture and code

– Collocates frequently accessed information and business logic

– When information is non-volatile:

• Greatly increases throughput

• Greatly reduces latency

– Still requires

• Remote interaction with events

• Remote writes /checkpoints

The Journey…Step 2

• DataGrid :: read-write/process in replicated memory

– Proportional impact on architecture and code to reap the benefits:

• Must develop code with awareness of scatter-gather/map-reduce

– Collocates most information and business logic

– Partitions/Spreads the workload across multiple servers

– Works wonders:

• Greatly increases throughput

• Greatly reduces latency

– Still requires remote event service :: other tiers tend to remain

– Requires particular data-grid-aware programming

The Journey…Step 3

• Virtual AppServer :: read-write/process in managed service environment

– Significant impact on architecture

• Must design system with awareness of scatter-gather/map-reduce

– Support for Spring Framework, JDBC, JMS, MAP API lessens impact

on code

– Collocates most information + business logic + events

– Partitions/Spreads the workload across multiple servers

– Works Wonders:

• Greatly increases throughput

• Produces smallest possible latency

• Provides intelligent self-healing Service Virtualization

Framework

9

Voila: Helicopters

Write

Take
Read

Write

Notify

Where the SB-SOA Rocks:

• Internal service implementation – exposed by arbitrary ‗Portal‘

• No XML to communicate – only for configuration

• SLA- driven behaviors [scale-out/up on demand]

• Fault-tolerance/self-healing

• Highly decoupled [autonomous]

• Amazon EC2-ready

The GigaSpacesXAP Service Framework...

Fail-Over

Load-Balancing

Partitioning

scales the

replication

overhead

Replication used to synchronize

primary/backup nodes

proxy

GigaSpacesXAP Business Services:

• Interact with each other through the space

• Are co-located with data/events for faster results

• Are deployed and managed in an adaptive and fail-safe environment

• Are implemented as Spring Beans

public class MessageProcessor {

@SpaceDataEvent

public Message messageProcessed(Message obj){

obj.setContent(obj.getContent()+" processed by: "+

this.getClass().getSimpleName()+" at: "+

new Timestamp(System.currentTimeMillis()));

obj.setProcessed(true);

System.out.println(this.getClass().getSimpleName()+

" processed message #"+obj.getId());

return obj;

}

}

SLA Driven deployment

SLA:
• Failover policy
• Scaling policy
• Ststem requirements
• Space cluster topology
PU Services beans definition

Continuous High Availability

Fail-OverFailure

SLA:
• Failover policy
• Scaling policy
• Ststem requirements
• Space cluster topology
PU Services beans definition

Service Reliability Self-Healing/Integration Demo

GSC 1

Embedded
Space

Processing
Unit 1

MessageProcessor

Spring Bean

GSC 2

Embedded
Space

GSC 3IDE

Space
Proxy

Processing
Unit 4

MessageFeed

Spring Bean

Embedded
Space

Processing
Unit 2

MessageProcessor

Spring Bean

Embedded
Space

Processing
Unit 3

MessageProcessor

Spring Bean

Spring-AppServer
(renders view)

Space
Proxy

TPC: Transparent Partitioning & Colocation

• The next wave of applications will scale in this manner

– Because Gartner says so

• Many already scale one or two tiers in this way

– Partitioned Databases with Triggers

– Content-Based Routing though Messaging with coupled consumers

– All-in one web applications using caching (IMDG)

• Space-Based Architecture offers an implementation of TPC using Spaces

– GigaSpaces enables this architecture for .NET, C++, and Java

Parallel Processing: Divide and Scale out

Appserver
Proxy

Request

Request

Request

Proxy

Proxy

Proxy

Write

Write

Write

Service1

Service2

Service3

Partitioned
Spaces

Request: Zoom-in

update stocks where …

Proxy

Virtual
Table

Colocation: Dramatically Reduce Latency

Request Feed
Proxy

Request

Requests

Request

Proxy

Write

Write

Write

Partitioned
Spaces

Request: Zoom-in

Proxy

Virtual
Table

update stocks where …

Client
Registration

Offer Driver

Execution
Engine

Matching
Engine

Average Latency ~14 milliseconds

(+ ~2 milliseconds for backup)

Example: Algorithmic Trading

Reduced Latency Due To Colocation

Offer Driver

Execution
Engine

Matching
Engine

Average Latency 0.600 milliseconds

[600 microseconds]

(+ ~2 milliseconds for backup)

Client
Registration

Linear Scaling Demo: Logical Workflow

Client

Accounting

BrokenOrderCleaner

Logistics

OrderSystem

Linearly Scalable OrderProcessing: Deploy Once:

GSC 1

Space
Proxy

Processing
Unit 1

orderfeed
Spring Bean

GSC 2

Embedded
Space

Processing
Unit 2

ordersystem
Spring Bean

GSC 1

Embedded
Space

Processing
Unit 1

ordersystem

Spring Bean

GSC 2

Embedded
Space

Processing
Unit 2

ordersystem
Spring Bean

GSC 3

Embedded
Space

Processing
Unit 3

ordersystem

Spring Bean

One Logical Space

(Partitioned)

GSC 4

Space
Proxy

Processing
Unit 4

orderfeed
Spring Bean

Linearly Scalable OrderProcessing: Deploy Again:

The throughput of the
application grows linearly as
the number of ordersystem
deployments increase. }

24

Services can be

Java, C++, .Net

Content-Based

Routing

Shared state to

enable stateful

services

SB-SOA = Real-time SOA for Stateful Applications

25

Questions Please?
Thank You!

http://www.jroller.com/owentaylor

