
A Small Step towards
Event Driven Architectures

Dan Bergh Johnsson

Senior Consultant and Partner

Omegapoint AB; Sweden

2

Overall Presentation Goal

Show the mismatch of
traditional call-stack

architectures vs modern
multicore machines

and

point in a feasible direction

3

Call Stack Code

public void clearOrderForShipping() {

cardservice.reserveFundsOnCard();

inventory.allocateStuff();

custserv.notifyOrderPreparesForShip();

storehouse.prepareForShipping();

}

• One-processor job!

4

Call Stack

Advantages

• Easy error handling

– Cut on first fail

• “Tail” of failing job
never executed

• Order seems
important

Drawbacks

• Execution locked
into one processor

– Amdahl’s Law

• Limited by
“headroom” inside
processor

– Moore’s “Law”

5

Modern computers

• Heat/power
limiting factor

• New measures

– MIPS / Watt

– MIPS / m3

• Multi-core

6

Next Generation Computers

• More processors

• Each processor not
more powerful

• “Headroom inside”
does not rise

7

The Problem to Come

Facts

• More complex computations

• Not faster processors

Effect

• Better capacity

• Same, or slower, response time

Insight

• We need to change

8

One Possible New Guiding Star -
EDA

Event Driven Architecture

• Events trigger processing

• Processing generates events

• Watch the state whenever you want

“Order Cleared” Example

– OrderCleared -> CardPayment,
Inventory …

– LowOnStock -> Replenishment

9

Big Mind-Shift

• Who will Make the Leap First?

– Projects minimize risks

• Who will be Left Behind?

– Existing systems will not be changed

• Need Low Threshold Approach

10

Small Step - From Verbs to Nouns

public void clearOrderForShipping() {

new CardFundReservationTask().execute();

new InventoryStuffAllocationTask().execute();

new PreparedForShippingNotificationTask().execute();

new StorehouseShippingPreparationTask().execute();

}

• reserveFundsOnCard => CardFundReservation

11

Small Change, Big Difference

• Separation of responsibilities

– Defining a task

• new CardFundReservationTask()

– Executing a task

• .execute();

• Opened up for parallelism

12

Another Step - Shifting
Responsibilities

public void clearOrderForShipping() {
cardserviceDest.send(
new CardFundReservationTask());

inventoryDest.send (
new InventoryStuffAllocationTask());

customerserviceDest.send (
new PreparedForShippingNotificationTask());

storehouseDest.send(
new StorehouseShippingPreparationTask());

waitUntilSynch();
}

• Command/Request => Inquiry/Needing Help
• Asynchronous and Parallel Computations

13

Order is not Always Important

Seem important

cardservice.
reserveFundsOnCard();

inventory.allocateStuff();

Also seem important

inventory.allocateStuff();

cardservice.
reserveFundsOnCard();

14

Inquiry Driven Architectures

Advantages

• Parallelism

• Faster response
time

Drawback

• Execute everything
even if not
necessary

• Compensating
action on failure

• Cumbersome error
handling

• Inconsistency
needs to be
modelled

15

My Boss’s Slide

• Yes, we do consulting

– sales@omegapoint.se

• Yes, we are hiring

– jobs@omegapoint.se

16

How does this lead to EDA

Four modes of naming a channel and
associated semantics [Hohpe
CSS2007]

• Receiver – creditServiceDest

– Command based

• Operation – reserveFundsDest

– Need based

• Document – creditInfoDest

• Event – orderClearedDest

17

Summary

• Call stack architectures are not
sustainable

• We need to change
– and need to be able to in small steps

• Look for parallelism – sub system calls

• Question specified sequences

• Shift responsibility to callee-side

• Good luck

18

Concluding statement

Call-stack architectures are not
sustainable. Possible to change if

some assumptions are
challenged. We can make a small

step (on Monday).

</A Small Step towards
Event Driven Architectures>

Dan Bergh Johnsson

dan.bergh.johnsson@omegapoint.se

dearjunior.blogspot.com

