The Semantic Web – an overview

Olle Olsson
Swedish W3C Office
Swedish Institute of Computer Science (SICS)

National research institute
- R&D in information and communication technologies

Objective:
- conduct advanced and focused research in strategic areas of computer science

Sponsors:
TeliaSonera, Ericsson, Saab Systems, FMV (Defence Materiel Administration), Green Cargo (Swedish freight railway operator), ABB, Bombardier Transportation
Contents

The aim: provide an overview of the semantic web.

Main parts of presentation:
1. Semantic Web – motivation and objectives
2. Semantic Web technologies
3. Semantics in action -- examples
4. The larger landscape
1. Semantic Web: Motivation and Objectives

Why do we need a complementary approach?
The web – as we know it:
- Rich, global source of information
- Find information by surfing the web
 - Visual inspection of pages, mental understanding
- Supported by search engines
 - Find pages associated with text fragments
- Strong support for presentation

Typical need: combine data on the Web:
- Hotel and travel information may come from different sites
- Searches in different digital libraries
- Etc.

Humans combine such information easily
- Even if different terminologies are used!
Web content – machine usable?

- Program access to useful information on the web?
 - Automate routine tasks
 - Smart searches
 - Use online information repositories as data

- Automated use of web content is difficult
 - Partial information is of limited value
 - Difficult to make sense of, e.g., an image
 - Automated conclusions from analogies is difficult
 - Difficult to combine information automatically
 - is \(<bib:creator>\) same as \(<pubs:author>\)?
 - How to combine different XML hierarchies?
 - …

Common notation: ???
Common protocol: HTTP, ….
Principle: Decentralised
The missing link

Centralised

Decentralised

Human use

Loosely coupled on standardised foundation (web technologies)

Machine use

Tightly coupled

Missing framework?
The rationale for the Semantic Web

We have the web of documents (text, multimedia, ...)
- Interlinked network of documents
- Provided by independent sources
- Understandable representation and uniform access
- Web browsers make content available to users
- Users make use of content

We need the web of data
- Interlinked network of data
- Provided by independent sources
- Understandable representation and uniform access
- Programs know how to relate data
- Programs make use of data

- Semantic Web (SW) = programmable data web
The way ahead

Complications

- Data – stored in databases, applications, web pages, etc.
- Represented in various formats
- Structured in various data models
- Formats and models change over time
- Data interoperability difficult

Approach:

- Abstract from concrete representations
- Interoperability at abstraction level feasible
- Abstraction captures “semantics”
2. Semantic Web: Technologies

Characterizations of Technologies
What is needed?

- Languages for describing concrete data
 - E.g., “13.50” vs. “Price: 13.50; Currency: Euro”
- Languages for describing types of data (data models)
 - E.g., Price: numeric monetary value; currency; per quantity; ...
- Methods/tools for mapping data models to data models
 - E.g., ebXML (UN/CEFACT) to eBay
- Methods/tools for searching data
 - Query languages
- Methods/tools for interoperation with other web technologies
 - E.g., with the document web
- Etc. ...
Semantic Web basic building blocks

- User Interface & Applications
 - Query: SPARQL
 - Ontology: OWL
 - Rule: RIF
 - Data interchange: RDF
 - XML
 - URI/IRI
RDF – Resource Description Framework

- Basic data model – a “triple”
 - triple \((s, p, o)\) is such that:
 - “\(s\)”, “\(p\)”, and “\(o\)” stand for “subject”, “predicate”, and “object”, respectively
 - conceptually: “\(p\)” connects, or relates the “\(s\)” and “\(o\)”

- An example triple:

```plaintext
(  
  <http://...isbn...6682>, # “Le palais des miroirs”  
  <http://.../original>, # “is a derivative of the original”  
  <http://...isbn...409X> # “The Glass Palace”  
)
```

- **RDF** is a general model for such triples
 - Having machine readable formats like RDF/XML, Turtle, n3, RXR, ...
 - … and that’s it!
RDF Example

Set of triples form a graph – the **RDF graph**

```xml
<rdf:Description rdf:about="http://.../isbn/2020386682">
  <f:titre xml:lang="fr">Le palais des mirroirs</f:titre>
  <f:original rdf:resource="http://.../isbn/000651409X"/>
</rdf:Description>
```
RDFS – RDF Schema

- Simple forms of critical “meta knowledge”:
 - what terms to use
 - what restrictions must apply
 - what other relationships may hold

- RDF Schema
 - officially: “RDF Vocabulary Description Language”
 - the term “Schema” is retained for historical reasons…

- Formalism for defining a schema:
 - Classification: “Class”, “type”
 - Relationships “subClassOf”
 - etc.
RDF summary

- RDF basic model
 - Triples <subject, predicate, object>
- RDF syntax
 - Textual representation of sets of triples
 - XML, N3, ...
- RDF semantics
 - Intended meaning of sets of triples
 - Constraints
 - Implications
SKOS – Simple Knowledge Organisation Systems

- Practical need: simplified representation frameworks
 - for conceptual models
- A system must be simple to allow for a quick port of traditional data
- SKOS is a specialised representation framework
- Suitable for thesauri, classification schemes, subject heading systems and taxonomies
 - Dewey Decimal Classification, Art and Architecture Thesaurus, ACM classification of keywords and terms…
 - DMOZ categories (a.k.a. Open Directory Project)
- Wrapper around RDF
- Adapt/define classes and properties within certain limits
SKOS example

prefix skos: <http://www.w3.org/2004/02/skos/core#>
SPARQL – Query Language for RDF

- How to use data represented in RDF?
- Extract / match / find data in RDF graphs
- Basic need: language for query on RDF graphs
 - example: “give me the (a,b) pair of resources, for which there is an x such that (x parent a) and (b brother x) holds” (ie, return the uncles)
- Queries very important for distributed RDF data!
 - Queries across distributed data bases
- This is the goal of SPARQL (Query Language for RDF)
- Compare:
 - SQL: query sets of tables of data
 - SPARQL: query graphs of data
SPARQL example

```sparql
SELECT ?isbn ?price ?currency                     # note: not ?x!
```

- Returns:

  ```json
  [[<...49X>,33,£], [<...49X>,50,€],
  [<...6682>,60,€], [<...6682>,78,$]]
  ```
SPARQL Usage

- Locally, i.e., bound to some programming environments
 - Querying local RDF databases
- Remotely, i.e., over the network
 - separate documents define the protocol and the result format
 - SPARQL Protocol for RDF with HTTP and SOAP bindings
 - SPARQL results in XML or JSON formats
 - big datasets often offer “SPARQL endpoints” for this protocol
OWL – Web Ontology Language

- RDFS cumbersome for complex use
- Complex applications may want more possibilities:
 - similarity and/or differences of terms (properties or classes)
 - construct classes, not just name them
 - can a program reason about some terms? E.g.:
 - “if «Person» resources «A» and «B» have the same «foaf:email» property, then «A» and «B» are identical”
 - etc.
- OWL – “Web Ontology Language”
OWL objectives

- A conceptual model describes some domain
- **Ontology**: formal description of a conceptual model
- OWL is a language for defining ontologies
 - OWL is a meta modelling language – a logical language
- Three layers of OWL are defined: Lite, DL, and Full
 - “OWL Full” is the whole thing
 - Complete logic
 - “OWL DL (Description Logic)” restricts Full in some respects
 - Mechanisable logic
 - “OWL Lite” restricts DL even more
 - Easily implementable
3. Semantics in action – examples

Semantical use of web contents and other cases
Newsfeeds

- Feeds
 - Overview of news items
 - RSS format
 - Structured description
 - Title
 - Date
 - Abstract
 - etc.

World Wide Web Consortium

Leading the Web to Its Full Potential…

http://www.w3.org
2008-01-29

W3C Publishes HTML 5 Draft, Future of Web Content
2008-01-22: W3C today published an early draft of HTML 5, a major revision of the markup language for the Web. The HTML Working Group is creating HTML 5 to be the open, royalty-free specification for rich Web content and Web applications. "HTML is of course a very important standard," said Tim Berners-Lee, author of the first version of HTML and W3C Director. "I am glad to see that the community of developers, including browser vendors, is working together to create the best possible path for the Web." New features include APIs for drawing two-dimensional graphics and ways to embed and control audio and video content. HTML 5 helps to improve interoperability and reduce software costs by giving precise rules not only about how to handle all correct HTML documents but also how to recover from errors. Discover other new features, read the press release, and learn more about the future of HTML. (Permalink)
http://www.w3.org/News/2008#item8
2008-01-22

Call for Review: Canonical XML 1.1 Proposed Recommendation
2008-01-29: The XML Core Working Group has published the Proposed Recommendation of Canonical XML 1.1. The specification establishes a method for determining whether two documents are identical, or whether an application has not changed a document, except for transformations permitted by XML 1.0 and Namespaces in XML. Canonical XML 1.1 is a revision to Canonical XML 1.0 designed to add new uses, improve performance, and fix bugs.
Microformats

- Annotate HTML content with attributes
- Browser can offer specific actions
 - e.g., via add-ons
- Examples:
 - geo: locations
 - hCard: contact info
 - hCalendar: event info
 - Etc.
- Compare:
 - Skype web page annotations
GRDDL – Gleaning Resource Descriptions...

- Existing documents may already contain useful descriptions
- Create RDF data by systematic extraction
- GRDDL – Gleaning Resource Descriptions from Dialects of Languages
- GRDDL offers a mechanism for retrieving descriptive data from document
- GRDDL introduces
 - markup for declaring that an XML document includes gleanable data
 - Describing an algorithm, typically represented in XSLT, for gleaning the resource descriptions from the document.
RDFa

- Enriching web documents by semantical annotations
 - Without disrupting ordinary web document use
 - Enabling extraction of RDF and access as RDF

- RDFa slightly extends (X)HTML by:
 - defining general attributes to add metadata to any elements (c.f. “class” in microformats, but via dedicated properties)
 - provides an almost complete “serialization” of RDF in XHTML

- Similar to microformats approach but with more rigor and fully generic
 - makes it easy to mix different vocabularies (which is difficult in microformats)
Application trends

- Use of SW technologies
 - Creating added value within user organizations
 - Taking advantage of the investment in XML as a common format

- Used internally in various software tools, e.g.:
 - Configuration descriptions
 - Process descriptions
 - Error reports, etc

- Used for *metadata descriptions* of digital resources
 - Obvious usage, of course

- Used for *data integration*
 - Big payoff! Lots of examples.
SW data begins to accumulate on the Web

- **IgentaConnect** bibliographic metadata storage: over 200 million triples

- **Tracking the US Congress**: data stored in RDF (around 25 million triples)

- **RDFS/OWL Representation of WordNet**: also downloadable as 150MB of RDF/XML

- “Département/canton/commune” structure of France published by the French Statistical Institute

- **Geonames Ontology** and associated RDF data: 6 million (and growing) geographical features

- **RDF Book Mashup**, integrating book data from, eg, Amazon

- “**dbpedia**”: get infobox data of Wikipedia into RDF

- See, for example, the linked data index
Find the right experts at NASA

- Expertise locator for nearly 20,000 NASA civil servants using RDF integration techniques over 6 or 7 geographically distributed databases, data sources, and web services...

Courtesy of Kendall Clark, Clark & Parsia, LLC
Public health surveillance

- Integrated biosurveillance system (biohazards, bioterrorism, disease control, etc)

Courtesy of Parsa Mirhaji, School of Health Information Sciences, University of Texas (SWEO Case Study)
Semantic portal for cultural heritage

Courtesy of Francisca Hernández, Fundación Marcelino Botín, and Richard Benjamins, iSOCO, (SWEO Case Study)
Portal to Principality of Asturias’ documents

- Search through governmental documents
- A “bridge” is created between the users and the formal bureaucratic jargon using SW vocabularies and tools

Courtesy of Diego Berrueta and Luis Polo, CTIC, U. of Oviedo, and the Principality of Asturias, (SWEO Case Study)
Digital music asset portal at NRK

- Used by program production to find the right music in the archive for a specific show

Courtesy of Robert Engels, ESIS, and Jon Roar Tønnesen, NRK (SWEO Case Study)
Integrate various vendors’ product descriptions via RDF
- ring tones, games, wallpapers
- manage complexity of handsets, binary formats
A portal is created to offer appropriate content
Significant increase in content download after the introduction

Courtesy of Kevin Smith, Vodafone Group R&D (SWEO Case Study)
Adobe’s XMP

- Metadata is added by, e.g., Photoshop into files in RDF
- **XMP** is a way of embedding + vocabulary + a set of (public) tools (there are also 3rd party tools to extract the RDF content)
- Used by a number of platform solutions
4. The larger landscape

How the Semantic Web fits in
Where do technologies fit in?

Applications

Data represented in abstract format

Query, Manipulate, etc.

Map, Expose, etc.

Data in various formats

© 2008 W3C
Where do technologies fit in? (cont.)

Data represented in RDF, possibly with extra knowledge (RDFS, OWL, SKOS, Rules, …)

Applications

SPARQL, OWL inferences, etc.

SQL <=> RDF, GRDDL, RDFa etc.

Data in various formats
Examples of implemented SW Tools

- **Triple Stores**
 - RDFStore, AllegroGraph, Tucana
 - RDF Gateway
 - Mulgara, MySQL+SPASQL
 - Jena’s SDB, D2R Server, SOR
 - Virtuoso
 - Oracle Spatial 10.2
 - Sesame, OWLIM
 - Talis Platform
 - …

- **Reasoners**
 - Pellet, RacerPro, KAON2, FaCT++
 - Ontobroker, Ontotext
 - SHER
 - …

- **Converters**
 - flickurl, TopBraid Composer
 - GRDDL, Triplr, jpeg2rdf
 - …

- **Middleware**
 - IODT, Open Anzo, DartGrid
 - Ontology Works, Ontoprise
 - Oracle Fusion 11g
 - Profium Semantic Information Router
 - Software AG’s EII
 - Thetus Publisher, Asio, SDS
 - …

- **Semantic Web Browsers**
 - Disco, Tabulator, Zitgist
 - OpenLink Viewer
 - …

- **Development Tools**
 - SemanticWorks, Protégé
 - Jena, Redland, RDFLib, RAP
 - Sesame, SWI-Prolog
 - TopBraid Composer
 - DOME
 - …

Inspired by “Entreprise Semantic Web in Practice”, Jeff Pollock, Oracle. See also W3C’s Wiki Site.
Semantic Web in Document Domain

- Semantic perspective on document web resources
 - Preserve and support the document view of resources
 - Enable semantic access to descriptions embedded in resources
 - Example: RDFa, semantic annotations of XML-based resources

- Document perspective on semantic web resources
 - Preserve and support the semantical access to resources
 - Enable a document view of semantically represented resources
 - Examples: generation of presentation structure and style sheets from data

- Dual perspectives, but different objectives:
 - Supporting methods and tools: RDFa, GRDDL, ...
The Web Services (WS) toolbox enables loose coupling between service user and service provider
- Details in interaction controlled by descriptions – WSDL

But content-related aspects of service use is not fully supported:
- Service discovery, service characteristics, etc

Emerging area: Semantic Web services
- Semantic descriptions extend core WS descriptions
- Support for semantic aspects on service use.

The aim:
- provide a flexible service framework that addresses the challenges of the web – the dynamic character of services offered on the web
Summary
Conclusions

- The Semantic Web is here to integrate data on the Web
 - The public web
 - Restricted webs
 - Intranet
- The goal is the creation of a **Web of Data**
- Core technologies/functionalities are standardised
 - RDF, OWL, SPARQL, ... RDFa, ...
- Additional needs/functionalities in the pipeline
 - By extensions to existing technologies
 - By additional tools and technologies
Thank You for your attention!